
IoT Remote Reservation Mobile
Application for Washing Machines and

Dryers
Final Report

Team Number

17

Client
Greiner Jennings Holdings

Advisor
Goce Trajcevski

Team Members and Roles

John Fleiner: Android Mobile Developer
Ben Young: iOS Mobile Developer

Thomas Stackhouse: Backend Developer
Case Gehling: Backend Developer
Hongyi Bian: Hardware Engineer

Yuanbo Zhen: Hardware Engineer

Team Email:
sdded18-17@iastate.edu

Team Website:
https://sddec18-17.sd.ece.iastate.edu

Table of Contents
I. List of Figures 4

II. List of Tables 6

1. Introduction 7
1.1 Acknowledgement 7
1.2 Problem Statement 7
1.3 Operational Environment 8
1.4 Intended Users and Intended Uses 8
1.5 Assumptions and Limitations 9
1.6 Expected End-Product and Deliverables 10
1.7 Development Process 11

2. Requirements Specification 12
2.1 Context Diagram 12
2.2 Product Use Cases 13
2.3 Functional Requirements 16
2.4 Non-Functional Requirements 21
2.5 Constraints 23

3. Development Process 24
3.1 Agile Methodology 24
3.2 Agile Scrum Board 24
3.3 Agile Scrum Meeting / Daily Standup 26

4. Design 27
4.1 Objective of the Task 27
4.2 Overview 27
4.3 Proposed Design - Mobile Application 28

4.3.1 Use Case Diagrams 28
4.3.2 Class Diagrams 30
4.3.3 User Interface Wireframes 34

4.4 Proposed Design - Backend 36
4.4.1 Web Application Server 36
4.4.2 AWS Cloud Deployment 36
4.4.3 Communication with Mobile Applications 37
4.4.4 Communication with Hardware 37
4.4.5 Databases 37

4.5 Proposed Design - Hardware 38
4.5.1 Microcontroller 39

SDDEC18-17 1

4.5.2 User Interface 40
4.5.3 Power Source Control Unit 41
4.5.4 Communication with AWS IoT 42

5. Implementation 44
5.1 Mobile Application Implementation 44

5.1.1 Completed Android Customer Class Diagram 44
5.1.2 Completed Android Administrator Class Diagram 48
5.1.3 Completed Android Customer Interface 49
5.1.4 Completed Android Administrator Interface 50
5.1.5 Completed iOS Customer Class Diagram 51
5.1.6 Completed iOS Administrator Class Diagram 53
5.1.7 API Table 55

5.2 Backend Implementation 57
5.2.1 Server Layers 57
5.2.2 Controller Layer 57
5.2.3 Service Layer 58
5.2.4 Repository Layer 58
5.2.5 Databases 58
5.2.6 Spring Security 59

5.3 Hardware Implementation 60
5.3.1 GPIO Pins 60
5.3.2 LCD Screen 60
5.3.3 Keypad Response 61
5.3.4 Keypad Input 61
5.3.5 Relay Module 62
5.3.6 Completed Locking Mechanism 63

6. Testing Plan, Process and Results 64
6.1 Mobile Application Usability Testing and Validation 64

6.1.1 Usability Testing 64
6.1.2 Usability Testing Results 66

6.2 Mobile Application Unit Testing and Validation 67
6.2.1 Unit Testing 67
6.2.2 Unit Testing Results 71

6.3 Backend Server Testing and Validation 71
6.3.1 Service Layer 72
6.3.2 Data-Access Layer 72

6.4 Hardware Component Testing and Validation 73
6.4.1 Onboard Scripts Testing 73

SDDEC18-17 2

6.4.2 Circuit Functionality Testing 74
6.5 Requirements Verification and Validation 76

7. Security 79

8. Project Management 80
8.1 Roles and Responsibilities 80
8.2 Projected Timeline 83
8.3 Actual Timeline 85
8.4 Lessons Learned 86

9. Operation Manual 88
9.1 Overview 88
9.2 Intended Users 88
9.3 System Configuration 88
9.4 Contingencies 88
9.5 Getting Started 89

9.5.1 Prerequisites 89
9.5.2 Application Installation 89
9.5.3 Customer Steps 89
9.5.4 Create an Account 90
9.5.5 Login to Account 91
9.5.6 Credit Card Information 92
9.5.7 Home Screen 93
9.5.8 Reservation Screen 94
9.5.9 Confirmation Screen 95
9.5.10 Current Reservations Screen 96
9.5.11 Previous Reservations Screen 97
9.5.12 Access Code 98
9.5.13 Administrator Steps 99
9.5.14 Administrator Login 99
9.5.15 Administrator Home Screen 100
9.5.16 Energy Consumption Screen 101
9.5.17 Machine Activity Screen 102
9.5.18 Machine Activity Screen 103

10. Previous Work and Literature 104
10.1 Market Survey: IoT Pay-Per-Wash Industry 104
10.2 Market Survey: Samsung Electronics Laundry Innovation 104
10.3 Market Survey: Berendsen Microsoft Azure and IoT Hotel Laundry Service 104

11. Prototype Commercialization 105

SDDEC18-17 3

12. References 107

I. List of Figures

1. Context Diagram

2. Agile Sprints One and Two

3. Agile Sprints Two, Three, and Four

4. Agile Sprints Four and Five

5. Agile Scrum Meeting

6. Architecture Diagram

7. Customer Use Case Diagram

8. Administrator Use Case Diagram

9. Customer Class Diagram

10. Administrator Class Diagram

11. Customer Mobile Application Wireframe Set 1

12. Customer Mobile Application Wireframe Set 2

13. Administrator Mobile Application Wireframes

14. Hardware Concept diagram

15. Full-connection Electronic Hardware Diagram

16. Circuit Diagram

17. Complete Android Customer Class Diagram

18. Stripe Credit Card Validation

19. Stripe Payment Tokenizer

20. N/A

21. Stripe Imports

SDDEC18-17 4

22. Stripe Card Widget

23. Stripe Credit Card Validation

24. Complete Administrator Class Diagram

25. Complete Customer UI

26. Complete Administrator UI

27. Complete iOS Customer Class Diagram

28. iOS Stripe Tokenizer

29. Complete iOS Administrator Class Diagram

30. Server Layer Architecture Diagram

31. Database Schema

32. LCD Pin Configuration

33. Keypad Pin Configuration

34. LCD Welcome Script

35. Keypad Prompt Script

36. Keypad Input Script

37. Relay Module Pins

38. Action Function

39. Completed Locking Mechanism

40. Usability Test Template

41. Usability Test 1

42. Usability Test 2

43. Usability Test 3

44. Usability Test 4

45. Projected Timeline

46. Actual Timeline

SDDEC18-17 5

47. Registration Screen

48. Login Screen

49. Credit Card Screen

50. Home Screen

51. Reservation Screen

52. Confirmation Screen

53. Current Reservation Screen

54. Previous Reservations Screen

55. LCD Screen

56. Keypad

57. Washing Machine Locking Mechanism

58. Administrator home Screen

59. Machine Activity Screen

60. Override Screen

II. List of Tables
1. Mobile Application Product Events

2. Locking Mechanism Product Events

3. Customer Database Product Events

4. AWS IoT Product Events

5. Microcontroller Specification

6. Channel Relay Module Cost

7. Mobile Unit Test Results

8. Mobile Unit Test Results

9. Requirements Verification and Validation

10. Roles and Responsibilities

SDDEC18-17 6

1. Introduction
1.1 Acknowledgement

Clients:

Our team would like to thank Taylor Greiner and Connor Jennings from Greiner Jennings
Holdings, LLC for their contribution to the IoT Remote Monitoring Application for
Commercial Appliances. Taylor Greiner and Connor Jennings submitted the proposal for
the project and have provided our team with the necessary hardware and software
components to complete our project. The items they have provided include a washing
machine, a Raspberry Pi single-board computer, and an AWS IoT cloud service
subscription.

Advisor:

Our team would also like to thank Goce Trajcevski for his continued support and
guidance.

1.2 Problem Statement
Problem Statement

According to the industry definition, a laundromat is a facility with washing machines and
dryers available for public use. In fact, there are over 81,000 laundromats in the United
States and the largest growing demand industry for on-site laundromats include
apartments and dormitories. Despite the demand for on-site washing machine and dryer
services, laundromats are often met with customer complaints. Customers tend to
‘forget’ that they are not the only ones doing laundry. Common complains often include
‘having to wait for machines to become available’ or lack thereof scheduling.

Purpose

The purpose of our project is to find a method that mitigates scheduling conflicts
between customers who want to access washing machines and dryers in a shared
environment. To do so, our team will be utilizing the concept of IoT - Internet of Things.
The internet of things consists of a network of physical hardware devices that can be
controlled remotely.

SDDEC18-17 7

Solution Approach

Our proposed solution consists of three main components: AWS IoT cloud service, a
mobile application, and an LCD Keypad locking system. The AWS IoT cloud service will
be used to register a set of washing machine and dryers. A cross-platform mobile
application will be developed to connect to an IoT cloud service and allow users to
submit laundromat reservations. The reservation system on the mobile application will
allow users to pay to reserve a washing machine or dryer for a set period of time. Once a
reservation has been submitted and a payment transaction has been confirmed, a
unique reservation code will be generated for the user. During the reservation period, the
reserved machine will be locked and unable to be turned on until the unique reservation
code has been entered into a keypad by the user. This will help prevent customers from
traveling to a shared-appliance room only to find all of the machines in use.

1.3 Operational Environment
Since our proposed solution requires the use of several single-board computers, and
microcontrollers, washer control boards, and dryer control boards, these hardware
components may be subject to adverse operating conditions. Microcontrollers or
single-board computers are also susceptible to overheating if overused or if located in a
room with poor ventilation. It is expected that each washer and dryer will be frequently
used, so we must account for standard wear-and-tear, damages, and out-of-service
maintenance. Our microcontrollers and single board computers will be placed in an
environment that is vulnerable to water damage. Neither microcontroller no single-board
computer is water resistant, so caution must be taken when interfacing hardware
components.

1.4 Intended Users and Intended Uses
Industrial Users

Greiner Jennings Holdings, LLC is dedicated to creating and delivering tech services for
the industrial, electrical, and commercial space. They have collaborated with DPT Group
and Critical Labs whom are dedicated to boosting productivity and control costs through
synchronized communication, systems integration, and cloud computing. Therefore, the
intended users of our mobile application include environmental and power systems
manufacturers in the industrial, electrical, and commercial space.

Commercial Users

It is also expected that laundromat customers of our clients shall use the mobile
application to reserve washing machines and dryers.

Uses (Short-Term)

The short-term use case revolves around customers being able to remotely reserve a
washing/drying machine using a third-party transaction platform. Each reservation
generates a specialized time-dependent code. During the reservation period, the
customer may enter the previously generated code to unlock and use the machine.

SDDEC18-17 8

Uses (Long-Term)

Our clients plan to expand IoT to other types of commercial appliances. However, we
have been asked to direct our efforts towards the aforementioned short-term use case
as integration of other types of commercial appliances can be done once a
proof-of-concept has been developed.

1.5 Assumptions and Limitations
Assumptions

● A website reservation system shall not be included in the final prototype as the
requested solution is aimed for mobile devices

● A laundromat facility must profit from a reservation, regardless if the user is
absent during a reservation period

● The requested solution is expected to worth with a single washing machine
appliance

Limitations

● Battery Life for the mobile application must be minimal as the application will require
access within a Laundromat

● There must be stable Network Connection in the Laundromat for users to
connect to the mobile application

● The single-board computer has a 1 to 1 relationship with each appliance. For
every new appliance added, an additional Raspberry Pi is required. Therefore
scalability must be taken into consideration.

● Washing Machine Control Board connectivity are dependent on manufacturer
and model. Finding a solution that is ideal for a large majority of washing
machine controller will be a challenge.

● Without “hacking” into a washing machine, the pulling of power data will need to
be done using external components.

● The application will be mobile and thus any intensive computing should happen
on the server end of the architecture.

● Limited accesses to AWS server under Free-Tier payment plan.

● Hardware purchases may not exceed our $500 funded budget.

SDDEC18-17 9

1.6 Expected End-Product and Deliverables
Mobile Application

Our mobile development team is expected to deliver a cross-platform mobile application
that supports both the Android and iOS operating systems. The mobile application will
include a secure login-system, a secure payment transaction system, and a reservation
system with the ability to view receipts of their present and previous reservations.

End-Product Web Server

It is expected that our team provides a dedicated hosting server with a MySQL database.
the web server will be responsible for facilitating communication between the washing
machine control board and the mobile application. Requests made from the mobile
application will sent to the dedicated web server, which will work with the Amazon IoT
Web Service to control and provide feedback from the registered commercial appliances.
The MySQL database will be used to store user profile information, user login
information, and calendar scheduling data.

Hardware

The hardware that will be supplied to our clients include a microcontroller with an LCD
display and a numeric keypad attached to a portable lightweight washing machine. The
microcontroller will be responsible for communicating with AWS IoT web service and for
controlling the washing machine appliance.

Deliverables

● iOS Mobile Application

● Android Mobile Application

● Spring Boot Web Service

● Amazon Web Services Internet of Things w/ registered washing machine

● Portable Washing Machine equipped with a raspberry pi, LCD display and a
keypad

SDDEC18-17 10

1.7 Development Process
For the entirety of the project, our group followed Agile methodologies in the development
process. This revolved around incremental development with continuous refactoring at the
request of the three subteams, the advisor, and most importantly, the clients. We essentially
participated in two week sprints, however; some sprints were a week or three weeks long,
depending on circumstances with client availability as well as the schedule of each team
member. Typically we held bi weekly team meetings to review progress from the previous sprint
as well as plan for the upcoming spring based on feedback from bi weekly check ins with the
client and the advisor. Our client meetings revolved around status updates and often included
demos of the mobile application to receive feedback.

While we set out to follow test driven development methods, admittedly, we struggled to follow
this process during the first semester. We achieved most of our development on the mobile and
back-end server portions during the first semester and were rapidly changing/adding code to
both components. While it would have helped both our development efforts in the first semester
as well as our testing in the second semester to follow TDD concepts with more detail, the
reality is we didn’t always achieve this.

However, during the second semester, we followed TDD concepts rather thoroughly. Because
we had a solid code base in place, we were able to focus on testing early in the semester and
thus could continuously test our incremental development during each sprint.

SDDEC18-17 11

2. Requirements Specification
2.1 Context Diagram
A context diagram is a requirements model that that helps to identify the responsibilities of the
project’s work and the responsibilities of adjacent systems. Responsibilities are characterized as
flows of data between systems to complete the work of reserving a washing machine.

Figure 1: Context Diagram

Our project consists of four adjacent systems, a mobile application, a locking mechanism, an
internet of things web service, and a customer database. The mobile application is responsible
for sending user login and registration information, credit card data, and reservation input. The
mobile application is responsible for receiving authorization to login and for receiving
authorization to pay. The Locking mechanism is a hardware component that locks and unlocks
a washing machine. The locking mechanism receives an access code entered by the user and
submits the access code to the backend. The locking mechanism then receives the time left for
the current reservation period. The customer database is responsible for storing reservation
information, credit card information, login credentials. The customer database is also
responsible for sending a reservation receipt and payment authorization. The internet of devices
or internet of things is responsible for receiving power commands to the washing machine and
for registering new washing machine and dryer devices. The internet of devices then sends
power data. The context diagram also serves as a tool for finding business events and product

SDDEC18-17 12

events. The list of product events and their associated input and output flows for reserving a
washing machine are shown below.

2.2 Product Use Cases

Product Event Name
(Mobile Application)

Input and Output Summary of Product Use
Case

Mobile application sends
login information

email and password (input) Attempts to login the
customer

Mobile application sends
registration information

First name, last name, email,
password, confirm password
(input)

Registers a new user

Mobile application receives
login authorization

Customer identifier (output) Login information has been
approved

Mobile application sends
credit card information

Cardholder name, card
number, card year, card
month, card CVC (input)

Attempts to add/update
payment information

Mobile application submits
reservation information

Reservation date, reservation
start time, reservation end
time, number of washing
machines, number of dryers,
price (input)

Attempts to create a new
reservation for the customer

Mobile application pays for
reservation

Cardholder name, card
number, card year, card
month, card CVC (input),
payment token (input)

Attempts to pay for the newly
created reservation

Mobile application receives
transaction authorization

Success message (output) Reservation has been
approved

Mobile application sends
access code

4-digit access code (input) Submits valid access code to
unlock a washing machine

Table 1: Mobile Application Product Events

SDDEC18-17 13

Product Event Name
(Locking Mechanism)

Input and Output Summary of Product Use
Case

Locking Mechanism locks or
unlocks Washing Machine

Power on/off command
(input)

Turns the washing machine
on/off

Locking Mechanism receives
access code

4-digit access code (output) Attempts to lock or unlock the
washing machine

Locking Mechanism sends
access code

4-digit access code (input) Submits access code to
database for verification

Locking Mechanism receives
estimated time remaining

Time in milliseconds (output) Receives estimated
reservation time remaining for
the washing machine

Table 2: Locking Mechanism Product Events

Product Event Name
(Customer Database)

Input and Output Summary of Product Use
Case

Database receives login
credentials

Email and password (output) Receives login credentials to
validate login

Database receives
registration information

First name, last name, email,
password, confirm password
(output)

Registers user and stores
information in the database

Database receives
reservation information

Reservation date, reservation
start time, reservation end
time, number of washing
machines, number of dryers,
price (output)

Registers new reservation
and stores information in the
database

Database receives credit card
information

Cardholder name, card
number, card month, card
year, car CVC (output)

Updates credit card
information

SDDEC18-17 14

Database receives payment Price (output) Receives payment
information to validate
payment

Database sends approval or
denial of login

Customer Id or -1 (input) Determines if the user can
login

Database sends reservation
receipt

Laundromat location,
reservation start time,
reservation end time,
washing machine number,
access code, price (input)

Sends reservation
confirmation to the user

Database sends payment
authorization

Payment confirmation
message (input)

Payment information is
validated and reservation is
created successfully

Table 3: Customer Database Product Events

Product Event Name
(Internet of Devices - IoT)

Input and Output Summary of Product Use
Case

IoT registers new machine Microcontroller identifier Registers new washing
machine based on its
attached microcontroller

IoT receives power command Power command Powers on washing machine
via microcontroller

IoT sends power data Power status Washing Machine power
status is sent to the locking
mechanism

Table 4: AWS IoT Product Events

SDDEC18-17 15

2.3 Functional Requirements

2.3.1 Ubiquitous Requirements

1. Description: The mobile application shall display local laundromats, ATMs, and banks
within Ames ,IA

Fit Criterion: The mobile application shall parse laundromat, ATM, and bank
nodes from openstreetmap.org to obtain the name, address, latitude, and
longitude data.

Rationale: Each laundromat shall represent a location for which a reservation
may be performed. If the user chooses to pay with coins, then it may be
beneficial to the user if nearby ATMs and banks are displayed.

2. Description: The mobile application shall login the customer upon a successful login
authorization.

Fit Criterion: The mobile application shall store the customer’s unique
identification number using the singleton design pattern and then transition the
user to the either a) credit card screen if a credit card has not been entered or b)
the home screen if a valid credit card is on file

Rationale: On a successful login attempt, the application needs to navigate the
user to the next step in the sequence of reservation steps.

3. Description: The mobile application shall inform the user of a credit card charge upon
a successful transaction authorization.

Fit Criterion: The mobile application shall notify the user with a reservation receipt
including the laundromat location, reservation date, reservation time frame,
washing machine number, price, and reservation code upon a successful
transaction authorization.

Rationale: Once a reservation has been created, it is required by law to notify the
user of a charge to their account and provide them with enough information to
request a refund if-need-be.

SDDEC18-17 16

2.3.2 Event-Driven Requirements

1. Description: When the customer clicks the login button, the mobile application shall
send login data to the server

Fit Criterion: When the customer clicks the login button, the mobile application
shall attempt a login by sending the email address and password to the server for
validation.

Rationale: Since the application serves as a payment transaction platform, it is
required that the user is provided a secure login method for an account tied to
their personal information.

2. Description: When the customer clicks the reservation button, the mobile application
shall send registration data to the server

Fit Criterion: When the customer clicks the reservation button, the mobile
application shall register a new user, given a valid first name, last name, email
address, password, and confirmed password. Ideally two-factor authentication
would be performed to validate the email address.

Rationale: A customer must be given the ability to register a new account since
we are required to record all transactions and to provide receipts of all
reservations. Transactions must be recorded and paired to a customer account
for company tax and refund disputes.

3. Description: When the customer clicks the credit card button, the mobile application
shall send credit card information to the server

Fit Criterion: When the customer clicks the credit card button, the mobile
application shall validate and then securely send the cardholder name, card
number, card expiration month, card expiration year, and card CVC number to
the database.

Rationale: A credit card must be on file in order to perform a reservation. It is a
standard practice to ask for credit card information before allowing the user
access to the entire application.

SDDEC18-17 17

4. Description: When the customer clicks the reserve button, the mobile application shall
create a new reservation.

Fit Criterion: When the customer clicks the reserve, button, the mobile application
shall attempt to create a new reservation by submitting the reservation date,
reservation start time, reservation end time, number of washers, number of
dryers, and price to the backend for validation. If the reservation criteria is valid
and enough washers and dryers are available for the duration of the reservation,
then a new reservation will be created.

Rationale: A reservation form is required to create a new reservation that meets
the time constraints requested by the customer.

5. Description: When the user enters a reservation code into the locking mechanism, the
locking mechanism shall unlock the washing machine

Fit Criterion: When the user enters a 4-digit reservation code generated upon the
creation of a successful reservation, the locking mechanism shall validate the
code by sending it to the server for confirmation. A successful validation shall
unlock the washing machine.

Rationale: The washing machine must remain locked until a valid reservation
code has been entered by the correct user.

6. Description: When a new microcontroller has been purchased, the IoT web service
shall register a new device.

Fit Criterion: When a new microcontroller has been purchased by our clients, the
device shall be registered to IoT web service via the AWS console.

Rationale: The system must be scalable to allow for more washing machines to
be added to IoT in the future.

7. Description: When the power command is received, then the power to the washing
machine shall be enabled.

Fit Criterion: When the power command is received from the locking mechanism,
then the power to the washing machine shall be enabled

Rationale: To lock/unlock the washing machine, the power source to the machine
needs to be cut/enabled.

SDDEC18-17 18

2.3.3 State-Driven Requirements

1. Description: While the washing machine is running, the locking mechanism shall
receive the estimated time remaining

Fit Criterion: While the washing machine is running, the locking mechanism shall
receive the estimated time remaining in milliseconds for the current reservation.

Rationale: The locking mechanism needs to know how much time is remaining so
that when the time runs out, power can be cut to the washing machine.

2. Description: While the washing machine is running, the locking mechanism shall
receive power status information

Fit Criterion: While the washing machine is running, the locking mechanism shall
receive an on/off message indicating the current status of the washing machine.

Rationale: The locking mechanism needs to know the current status of the
washing machine to prevent input from the keypad.

2.3.4 Unwanted Functional Requirements

1. Description: If the login credentials are invalid, then the mobile application shall
invalidate the login and prevent them from navigation onward.

Fit Criterion: If the web server returns a customer id of -1, then the login
credentials were invalid and the login attempt shall be null and void. Both the
email and password field shall display an error message indicating than an
invalid email or password was entered.

Rationale: It is imperative that we let the user know when an invalid login attempt
occurred and what the cause may have been without giving away information to
potential brute force hackers.

2. Description: If the registration credentials are invalid, then the customer shall not be
registered as a new user.

Fit Criterion: If the web server returns a registration error, then the registration
input fields were not entered correctly and the registration shall be null and void.
All fields including first name, last name, email, password, and confirm password
shall display an error message indicating that an invalid email or password was
entered.

Rationale: For maintainability and security purposes, we must prevent invalid
accounts from being added to our database.

SDDEC18-17 19

3. Description: If the number of washers or number of dryers exceeds the available
amount, then a warning shall be displayed.

Fit Criterion: If the number of washers or number of dryers exceeds the available
number of washers and dryers, then the reservation shall be canceled and a
warning shall popup on the screen indicating the number of available appliances.

Rationale: For maintainability and security purposes, we must prevent invalid
reservations from being added to our database.

4. Description: If the customer's credit card is declined, then a warning shall be
displayed.

Fit Criterion: If the customer’s credit card is invalid or has insufficient funds, then
the reservation shall be canceled and a warning shall popup on the screen
indicating that there was an issue with the customer’s credit card and the
reservation did not go through.

Rationale: For maintainability and security purposes, we must prevent invalid
transactions from going through our system.

5. Description: If the customer enters an invalid reservation access code, then the
locking mechanism shall not unlock the washing machine.

Fit Criterion: N/A

Rationale: During a reservation time, the washing machine must only be
available to the customer who reserved the appliance.

SDDEC18-17 20

2.4 Non-Functional Requirements

2.4.1 Look and Feel Requirements

1. Description: The mobile application shall look profession by having a well-thought out
and clean user interface design.

Fit Criterion: At least 90% of test users shall report a positive user interface
experience after demonstrating the mobile application.

2.4.2 Usability and Humanity Requirements

1. Description: The mobile application shall be simple to use

Fit Criterion: At least 80% of customers shall complete the reservation process
within the time constraints identified by the usability test found within the testing
section of the report.

2.4.3 Performance Requirements

1. Description: Login validation with the backend shall take no longer than 3 seconds to
complete.

2. Description: Reservation validation with the backend shall take no longer than 3
seconds to complete.

3. Description: Credit card validation and updates with the backend shall take no longer
than 3 seconds to complete

4. Description: Reservation submission shall take no longer than 5 seconds to complete.

5. Description: Loading historical and future reservations shall take no longer than 2
seconds to complete.

6. Description: Unlocking of a machine shall take no longer than 2 seconds to complete
after entering a valid reservation code.

7. Description: The locking of a machine shall take no longer than 1 second after the
reservation period has ended (Based on System time).

SDDEC18-17 21

2.4.4 Maintainability and Support Requirements

1. Description: The mobile application shall be portable to Android and iOS Operating
Systems.

Rationale: The mobile application needs to be able to reach the greatest number
of potential customers if multiple operating systems are supported.

2.4.5 Security Requirements

1. Description: The mobile application shall have secure login and registration.

Fit Criterion: The mobile application shall utilize Oauth2.0, Spring Security, and
two-factor authentication.

2. Description: The mobile application shall have secure payment transactions.

Fit Criterion: The mobile application shall use the Stripe SDK for secure payment
transactions for both android and iOS devices.

3. Description: The mobile application shall have secure API endpoints.

Fit Criterion: The mobile application shall use secure SSL encryption of HTTPS.
Each API shall have an authenticated certificate appended to the api indicating
that the call is coming from a valid user interface.

4. Description: The mobile application shall have encrypted data when sent via APIs.

Fit Criterion: The mobile application shall utilize Spring Boot credit card
encryption techniques to hide plain text APIs.

2.4.6 Cultural Requirements

1. Description: The mobile application shall be presented in English, but allow for
scalability to multiple languages.

Fit Criterion: The mobile application shall use localization techniques to easily
translate text to support multiple languages.

SDDEC18-17 22

2.5 Constraints
1. Description: The hardware appliances shall be limited to one appliance for the
prototype, but allow for scalability.

Fit Criterion: The hardware appliances shall be limited to a single washing
machine for the prototype, but the architecture will be designed to allow for the
addition of more appliances in the future.

2. Description: The mobile application shall not run on Windows Operating System.

Rationale: Windows phones control the minority of mobile devices on the market
and are no longer supported by Microsoft.

3. Description: The application shall not be built for web.

Rationale: The goal of our prototype is to make a mobile reservation system that
works on-the-go. A website would be for administrator data and analytics support
which is out-of-scope for the project.

4. Description: The locking mechanism shall not modify the internal structure of a
washing machine.

Rationale: Modifying the wiring within a washing machine violates IEEE
standards.

5 Description: Our prototype shall not exceed a budget of $500

6 Description: Our prototype shall utilize the Internet of Things concept as the
management tool for the washing machine.

Rationale: Requested by our clients

SDDEC18-17 23

3. Development Process
3.1 Agile Methodology
Agile is an iterative approach to software development that divides a projects timeline into a
series of incremental steps. Agile places emphasis on the following management components:
increments, sprints, storyboarding, and scrum. An increment is a series of sprints. A sprint is
usually a one or two week development session. Therefore, an increment tends to contain 1-2
months worth of sprints, or approximately 8 sprints. Storyboarding is the process of identifying,
assigning, and estimating the timeframe and difficulty of a set of tasks for each sprint. Each task
is given a number, usually between 1 and 20, to specify how hard the task is to complete for the
given sprint. At the end of each sprint, the values for all completed tasks is added up to equal a
number called the velocity. The velocity is used as a comparator between sprints to see how
much work is being completed.

3.2 Agile Scrum Board
Our team incorporated agile into our entire project planning and design process throughout the
last two semesters. We have included our complete Scrum board for the second semester of
Senior Design 492 below.

Sprint 1-2:

Figure 2: Agile Sprints One and Two

SDDEC18-17 24

Spring 2-4

Figure 3: Agile Sprints Two, Three, and Four

Spring 4-5

Figure 4: Agile Sprints Four and Five

SDDEC18-17 25

3.3 Agile Scrum Meeting / Daily Standup
As mentioned above, agile methodology utilizes a concept call a daily standup or a daily scrum
meeting where all of the developers get together and go around the room to discuss what they
accomplished the previous day, what the plan on accomplishing during the current, and what
roadblocks are in their way. Due to schedule conflicts, our team opted to use a team slack
channel to communicate our plans daily. Every other Wednesday, our team would meet with
both our clients and advisor to discuss future plans. A depiction of our agile calendar is shown
below:

Calendar

Figure 5: Agile Scrum Meeting

SDDEC18-17 26

4. Design
4.1 Objective of the Task
Develop 1) a mobile application to reserve a set of washing machines and dryers 2) build a
locking mechanism for a washing machine using a microcontroller, keypad and LCD display 3)
utilize AWS IoT to register laundromat appliances and 4) use a web server to communicate
between the mobile application, hardware components, and AWS.

4.2 Overview
Each individual component of our proposed design is explained in more detail in the upcoming
sections. The following architecture diagram identifies the main communication channels
between each module of our prototype. The mobile application serves as the user interface
where a customer may create and pay for a reservation. Information sent from and received by
the mobile application communicate with a Spring Boot Web Server via HTTP Rest APIs. Our
Spring Boot Web Server queries a MYSQL database to retrieve reservation information related
to the customer. AWS IoT is an Amazon Web Service for the Internet of Things. AWS IoT is
where our microcontrollers are registered. The MQTT protocol is used to communicate between
the microcontroller and AWS to share state changes such as power on/off status, or time
remaining before a washing machine/dryer powers off. The commercial appliance refers to
washing machines and dryers. For our prototype, we will be using a single washing machine.
References made to commercial appliances will refer to our individual washing machine
appliance. Spring Boot and AWS communicate via lambda functions to share washing machine
related information such as reservation access codes.

Figure 6: Architecture Diagram

SDDEC18-17 27

4.3 Proposed Design - Mobile Application
Mobile Application

In order to create a mobile application that may run on multiple operating systems, one
of two approaches may be taken: native development or cross-platform development.
The native approach refers to the utilization of an operating system or IDE’s core
programming language. Native android applications use Java or Kotlin (a new
programming language developed by Google) and native iOS applications use Swift.
Cross-platform development refers to the use of specialized frameworks that can run on
more than one operating system. Common cross-platform frameworks include Xamarin
and React Native. Due to our team’s prior experience in both native Android and iOS,
the android mobile application will be developed with Java and the iOS mobile
application will be developed with Swift.

4.3.1 Use Case Diagrams
Customer Use Case Diagram

At the request of our clients, the mobile application shall consist of two components: a
customer scenario and an administrator scenario. The customer scenario involves a user
being able to reserve a set of appliances for a fee. The administrator scenario involves
an admin being able to view information about AWS IoT registered appliances. The first
scenario can be seen below:

Figure 7: Customer Use Case Diagram

SDDEC18-17 28

While using the mobile application, a customer shall be able to perform a set of actions
including: Managing their account, creating a reservation, and using the appliance. Since
our application requires a payment transaction service, each user must be logged in to a
secure account. A valid email address is required for emailing reservation receipts.
Payment information must be added to validate credit card information when attempting
to pay the reservation fee. Contact information is needed for authentication and payment
disputes. In order to create a reservation, the user must be able to select a laundromat
location. Our client’s currently own property for a single laundromat, but due to plans for
expansion the mobile application will allow users to select from a list of local laundromats
in Ames, IA. Once a location has been selected, a date, start time, and end time must be
gathered to create a reservation. Typically, a single wash or dry cycle costs $1. The
mobile application charges a convenience fee of $2 per cycle as requested by our
clients. Once the reservation criteria has been added, the user must pay the fee through
a secure payment transaction service. Once a reservation has been made, the user
must travel to the selected laundromat location. To power on an appliance, the customer
must enter a unique reservation code shown on the mobile application.

Administrator Use Case Diagram

While using the mobile application, an admin shall be able to view appliance analytics
gathered from each laundromat location. Depending on the size and brand of the
appliance, energy consumption may vary. The administrator shall be able to see what
machines are using the largest percentage of energy. It is also likely that some machines
will see more wear and tear than others due to their placement in the laundromat facility.
The administrator shall be able to view what machines are active the most and what time
of day sees the most customers. It has been brought to our attention that it is possible
for users to create a reservation, but fail to show up at the laundromat during their
reservation period. Under this exception case, an administrator must be able to override
machines and allow for them to become available once again if the customer hasn’t used
their reservation code within a 15 minute grace period.

Figure 8: Administrator Use Case Diagram

SDDEC18-17 29

4.3.2 Class Diagrams
Customer Class Diagram

To help document the software architecture of our proposed solution, our team
developed a customer class diagram. The customer class diagram is to be used as a
reference for the expected classes, attributes, operations, and relationships between
screens. The diagram serves as a mapping of the structure for our reservation system.
The proposed customer class diagram can be seen below:

Figure 9: Customer Class Diagram

Login Activity

Mobile screen where the user may either create an account or login in with an
existing account.

Registration

Mobile screen where the user creates an account by entering both identification
and contact information.

SDDEC18-17 30

Credit Card Activity

The first time a user logs in, it is common practice for the mobile application to
request payment information before proceeding any further. Popular mobile
applications including Uber, Lyft, LimeBike, and Ofo implement a similar
structure.

Map Activity

Once a valid credit card has been submitted, the customer is taken to the home
screen where they will be presented with a Google Maps screen. The screen
allows for customers to search for and select laundromats near their current
location to begin the reservation process. They may also navigate to their user
settings where they made update contact and payment information. A recording
of all current and previous reservations/transactions will be available for viewing.

Settings Activity

Mobile screen where the user may update their credit card and contact
information.

Previous Reservations Activity

Mobile screen that displays a list of reservations that occurred in the past. All
transactions and receipts must be available to the user.

Current Reservations Activity

Mobile screen that displays a list of reservations that are currently active. The
transaction and receipt is available to the user. A cancellation fee shall be
processed for the cancellation of a reservation.

Create Reservations Activity

Mobile screen that allows users to enter reservation criteria for submission. Upon
submission, the customer shall be automatically billed a reservation fee and a
unique reservation code will be presented to the user. The reservation code can
be viewed by looking at current reservations.

SDDEC18-17 31

Administrator Class Diagram

The administrator class diagram is also to be used as a reference for the expected
classes, attributes, operations, and relationships been admin screens. The final iteration
of our administrator class diagram blueprint can be seen below:

Figure 10: Administrator Class Diagram

Login Activity

Mobile screen where our clients may login. A registration screen is not needed as
an administrator shall have database read write permissions and should be
added from an administrator portal. An administrator portal is out of scope for the
project, but the design should reflect future expansion.

Map Activity

Once an administrator has logged into their account, they will be taken to the
home screen where they will be presented with a Google Maps screen, similar to
the customer home page. The screen allows for administrators to search for and
select laundromats from which they own and operate. Once a laundromat has
been selected, they will have the ability to view energy consumption data,
machine activity data, and to override any given machine as specified in the
Terms of Service.

Energy Consumption Activity

Mobile screen that displays a visual of the energy consumption per machine at
the selected laundromat location.

SDDEC18-17 32

Machine Popularity Activity

Mobile screen that displays a visual of the machine popularity throughout the
day. For example, it may be beneficial to see that 7 machines were running at 1
pm while only 1 machine was running at 9 pm.

Override Machine Activity

Mobile screen that allows an administrator to override a machine by powering it
on/off. This may be especially useful if a customer who made a reservation fails
to show up for their “appointment” within the grace period identified in the Terms
of Service.

Note: More information is given in the user interface section

SDDEC18-17 33

4.3.3 User Interface Wireframes
Mobile Application Wireframes

A mobile application wireframe is a visual representation of the android and iOS user
interface. Our team used InVision Studio, a professional screen design tool for
developing high-end wireframes for a mobile application. Wireframes allow for us to
better understand the screen-flow and use cases that our customers may take. In
addition, they provide a clear visual of what the product shall look similar to when
complete. The wireframes shown below will be used as guidance as we develop both the
Android and iOS mobile applications.

Customer User Interface Wireframes

The customer user interface must allow for users to pay for a laundromat reservation.
The first set of user interface wireframes for the customer are shown below:

Figure 11: Customer Mobile Application Wireframes Set 1

Set 1

The first set of wireframes depict the user interface for login and reservation as outlined
in the class diagram. Once a successful login attempt has been made, the customer will
be taken to a homepage with Google Maps. The goal is to display markers on the map
with the location of local laundromats in Ames, Iowa. The user may either select a
laundromat marker or search for a laundromat to begin the reservation process. Once a
laundromat has been selected, the user must provide a date and time frame for when
the reservation should occur.

SDDEC18-17 34

The second set of user interface wireframes for the customer are shown below:

Figure 12: Customer Mobile Application Wireframes Set 2

Administrator User Interface Wireframes

The administrator user interface must allow for admins to view laundromat data
analytics. The user interface wireframes for the administrator are shown below:

Figure 13: Administrator Mobile Application Wireframes

The administrator wireframes depict the user interface similar to that identified in the
class diagram. Once the administrator has logged in successfully, the admin will be
taken to a homepage with Google Maps, similar to the customer design-flow. The admin
may select a laundromat marker or they may search for a laundromat. Once a
laundromat has been selected, the administrator will be able to select one of three
options: view energy consumption, view active machines, override machines.

SDDEC18-17 35

4.4 Proposed Design - Backend
Overview

To both serve the many mobile application requests and connect the mobile applications to the
hardware components, our team decided to use a distributed server. This server is actually a
RESTful web application, and uses Spring Boot to connect to a remote database, handle
unlocking requests from hardware components, and supply data to requesting mobile
applications.

4.4.1 Web Application Server
The web application server was created as a standard Spring Boot application, utilizing
Gradle for dependency management and Spring Data JPA with Hibernate to connect to
databases. The web application server is divided into several different packages that
separate out layers of the application. A ‘config’ package is where all of the connection
and Spring bean configuration happens. The ‘controller’ package is where the controller
layer sits, and is the starting point for all REST requests. The controller layer is the
upper-most layer of the web application, and serves all incoming requests from the
mobile applications. The ‘service’ package holds the service layer and sits directly below
the controller layer. The service layer serves as the primary layer of business logic,
modifying objects to store in the database and consolidating database information before
returning it to the controller layer. The ‘repo’ package holds the repository layer, which
sits directly between the service layer and the database. It accesses the database via
Spring JPA and Hibernate, using standard SQL queries to look up data and return
results to the service layer. The ‘entity’ package holds the database models that the rest
of the application passes data around in. Each entity object defines a database table,
and each entity also has its own segmented repository, service, and controller
component. By segmenting the layers into components based on database models, the
overall application architecture can remain clear and consistent while the web application
expands throughout development.

4.4.2 AWS Cloud Deployment
For the prototype created with this project, only a single EC2 instance in AWS is
necessary. By hosting the web application server on AWS, we are able to delegate most
of the costs of hosting to an existing architecture and still have the web application
server accessible for both mobile applications and the hardware implementation to
remotely interact with. The prototype does not need to have high availability, time zone
crossover, region redundancy, autoscaling, load balancers, etc. However, the prototype
ha been designed in such a way that this is possible in the future, and can be
implemented as described in the section on prototype commercialization.

SDDEC18-17 36

4.4.3 Communication with Mobile Applications
The web application is primarily a RESTful web service that allows interaction with the
mobile applications. It accepts many different REST requests in the controller layer, and
uses standard JSON input formatting for data transference. When a REST request hits
the controller layer, the data is passed through the server layer, relevant database calls
are made in the repository layer, any data consolidation happens when the received
data is returned to the service layer, and the final result is returned to the controller layer
to send as a response to the mobile application that initiated the request.

4.4.4 Communication with Hardware
The web application uses a different method for interacting with the hardware
components than it does with mobile applications. Due to the hardware being integrated
with AWS IoT, it was decided that the communication between the hardware and the
web application would be the default transfer method that connected the hardware with
AWS IoT in the first place. It was initially thought that this transfer method was able to be
easily converted into REST calls, however it was later decided that using MQTT queues
made much more sense due to their integration with AWS IoT and their lightweight
nature. The web application shall use an MQTT listener that is integrated with Spring
Boot to listen to queues from the hardware. This MQTT listener shall be configured as
beans from a file in the ‘config’ package.

4.4.5 Databases
There are two different database implementations that this project shall use for testing.
The first implementation shall be an H2 embedded database that will automatically
create itself each time the web application starts, and shall last only while the web
application remains running. When this database starts, an SQL schema file shall be
applied to set up the necessary database tables, and another SQL file shall be applied to
insert test data. This H2 embedded database shall be used only for local testing, and is
done for consistency and compartmentalization between developers. The second
implementation shall be a MySQL database that is remotely hosted by Iowa State
University. Upon connecting to this database, the SQL schema file shall be run to set up
any database tables that are not already created. This allows some slight form of
automation, because otherwise once a table is created then it must be updated manually
if the schema ever changes in the future. This is only for the prototype, and should not
be used once commercialized. For notes on commercialization, see the section on
prototype commercialization.

SDDEC18-17 37

4.5 Proposed Design - Hardware
Overview

In order to create a reservation system, our team must also implement a locking system that
prevents a washing machine from powering on until the correct reservation code has been
entered. Creating a locking system requires four components: an LCD-keypad user interface, a
microcontroller a power source control unit, and a washing machine. The hardware system
design concept is illustrated below:

Figure 14: Hardware Concept diagram

SDDEC18-17 38

4.5.1 Microcontroller
Before implementation can begin, our team must select a microcontroller or single-board
computer that communicates with Amazon Web Services and is able to handle user
input from a keypad/LCD screen user interface. Our client’s recommended the following
three microcontrollers: Arduino Uno, Arduino Yun, and the Raspberry Pi 3 Model B. The
comparison for each microcontroller can be seen below:

Specs Arduino Uno Arduino Yun Raspberry Pi 3
Model B

Processor AVR ATmega328p Atmega32u4 &
Atheros AR9331

ARM1176JZF-S

Clock Speed 16 MHz 16 MHz & 400 MHz 700 MHz

RAM 2 KB 64 MB & 32 KB 512 MB

GPIO 20 20 8

Power 175 mW N/A (~300 mW) 700 mW

WiFi & Ethernet shield built-in built-in

OS & Language none/C Linino/C, python Any Linux/Any

Price $23.64 $89.95 $36.90

Table 5: Microcontroller Specifications

Arduino Uno

The arduino Uno was not selected for the following reasons:

● Lacks the computational power to support the MQTT protocol with
Amazon Web Service.

● Does not come with a WiFi module on the board

● Must purchase a WiFi shield

SDDEC18-17 39

The MQTT protocol is required to communicate with Amazon Web Service’s
Internet of Things as each microcontroller must be registered on the IoT service.
WiFi is needed to connect with AWS to send commands, validate reservation
codes, and receive status information.

Arduino Yun vs Raspberry Pi 3 Model B

Our team selected the Raspberry Pi 3 Model B for two reasons:

● Computational Power

● Budget

The Raspberry Pi 3 Model B offers a higher clock speed which means higher
computational power. The higher computational power is not required for our
prototype, but may provide benefit if expanded to multiple appliances. Since our
clients plan on expanding the individual prototype to include a line of appliances,
using a Raspberry Pi saves over 50% in costs for purchasing a stock of
microcontrollers.

4.5.2 User Interface
To create a user interface that can be attached to a washing machine, our team will
purchase a 9-digit keypad and an LCD screen. The 9-digit keypad will allow the user to
enter a reservation code generated by the server and accessed via the android and iOS
mobile application. Both components will be connected to a Raspberry Pi 3
microcontroller with jump wires. The keypad and LCD display need 23 pins and the
Raspberry Pi board contains 40 GPIO pins which is sufficient for building the user
interface. The 16x2 LCD screen uses 16 pins that will be separated into 3 power source
pins, 9 data bus pins, and 4 control bit pins.

Fritzing

Fritzing is an open-source software tool for designing and editing circuits. Our team
utilizing Fritzing to design a full-connected diagram of the hardware system as shown
below:

SDDEC18-17 40

Figure 15 Full-connection electronic-hardware diagram

4.5.3 Power Source Control Unit
We have confirmed with our clients that building a device to collect information while the
washing machine is running is out-of-scope for the proposed project. The primary goal is
to control the power of the washing machine. To control the power to the washing
machine, our team has selected to use a power relay in the circuit. There are several
channel-relay modules available on the market including a 1 channel, 2 channel, 4
channel, and 8 channel relay module. It is important to note that we are only considering
250 V AC voltage / 10A current / 5V DC coil voltage. The price for the different
channel-relay modules are shown below:

Channel Type Price

1 Channel Relay Module $5.80

2 Channel Relay Module $6.79

4 Channel Relay Module $7.86

8 Channel Relay Module $8.98

Table 6: Channel Relay Module Cost

SDDEC18-17 41

Cost

Since the cost for each relay module is within ~$1.00 from one another, budget was
excluded from the final decision.

Decision

Implementation of our hardware system requires at minimum a 1 channel relay module.
Our team selected a 4 channel relay module for two reasons:

● Safety

● Feedback Information

If a 1 channel relay module is used, a potential safety concern arises. A 1 channel relay
module always has one wire branch connected with 100V AC voltage which could cause
an electric shock if the circuit is not properly deployed. Therefore, it is recommended to
follow the “at least 2-channels” rule. The 2-channels rule allows for high voltage to be
detached from the circuit when not in use. The 4 channel relay module provides benefit
over the 2 channel relay module as the 2 additional channels may be used to provide
feedback information from the washing machine, if time allows. The remaining 2
channels will be set as “reserved channels”. As a result, we have designed a simple
circuit as shown below:

Figure 16: Circuit Diagram

4.5.4 Communication with AWS IoT
The communication between our local setup and AWS IoT is based on the Message
Queuing Telemetry Transport messaging protocol. MQTT is a light-weight networking
messaging protocol that has become popular recently for IoT communication. The

SDDEC18-17 42

concept behind MQTT is that devices may subscribe, publish, or listen to an AWS topic
for transmitting commands. AWS IoT recommends using an MQTT implementation.

SDDEC18-17 43

5. Implementation
5.1 Mobile Application Implementation

5.1.1 Completed Android Customer Class Diagram
As mentioned in the design section, a class diagram helps document the software
architecture and serves as a mapping of the structure for our reservation system.The
final version of the customer class diagram is shown below:

Figure 17: Complete Android Customer Class Diagram

Login Activity

The login activity requests an email address and password input from the customer in
order to validate a login. When the user clicks the login button, an asynchronous task is
created to make an API call to login. The asynchronous task prevents blocking on the
main UI thread which could lead to an application crash. The onPostExecute() function is
similar to a callback and is called when the API returns with data. On success, the API
returns a valid customer ID for the logged in user or -1 on error. If the user fails to login,
both input fields display an error message indicating an incorrect email or password. In
addition to a valid customer ID being returned, a second asynchronous task is called to
see if a credit card has been previously stored. If no credit card is on file, then the user is
prompted to enter valid credit card information. Otherwise, they will be taken directly to
the home page (Map Activity). If the user does not have an account, they may click the
register button to navigate to a registration form.

SDDEC18-17 44

Registration Activity

The registration activity requests identification information and contact information from
the customer. Email validation occurs on the client-side. When the user clicks the
register button, an asynchronous task is created to make an API to register the user. On
success, the onPostExecute() function returns a valid customer Id and navigates back to
the login screen.

Map Activity

The Map Activity is the home screen of the application. Users are provided with a screen
displaying Google Maps from the Google Maps Android SDK. We used the open-source
map database called openstreetmap.org to query for all Laundromat, Bank, and ATMs
located in the Ames, IA region. Since the data is open-source, we are allowed to use the
information so long as we credit openstreetmap.org for the data. Three separate
asynchronous tasks were written to retrieve the laundromat, bank, and atm data from our
database without blocking the main UI thread. To make a reservation, the user must
click on a laundromat marker. A marker in Google Maps is a pin that appears at a given
latitude longitude coordinate with an icon, title, and subtitle. In our case, the marker
displays an icon of a laundromat with the name of the laundromat and the address of the
laundromat. When the user clicks on the marker, a slider menu appears from the bottom
of the screen that allows the user to make a reservation. The Map Activity also has a
bottom navigation toolbar where the user may navigate to the settings activity, previous
reservations activity, or current reservations activity.

Reservation

Creating a reservation requires the following input information: reservation date,
start time, end time, number of washing machines, and the number of dryers. As
the user updates the number of washers and dryers, an asynchronous task is
created to communicate with the Spring Boot Web Server to determine the
current price based on the input parameters. When the user clicks the reserve
button, a chain of callbacks happen. An asynchronous task is created to verify
with the web server if enough appliances are available for the requested
reservation. If so, the Stripe SDK is used to handle the payment in a secure
manner. Otherwise, an alert displays on the screen to indicate that there are not
enough appliances available.

Strike SDK - Payment Transactions

The Stripe SDK built by Stripe is a popular library that lets applications accept
mobile payments and manage customer information from the stripe dashboard.
By doing so, Stripe receives a small percentage of the total transaction. Stripe
provides functionality for validating credit card input, securing credit card
information, and creating payment charges.

SDDEC18-17 45

Credit Card Validation

Figure 18: Stripe Credit Card Validation

Secure Payment Token

Figure 19: Stripe Payment Tokenizer

Reservation

As mentioned above, when the user clicks the reserve button, a Stripe payment
token is created. To create a stripe payment token, a credit card must be
supplied to the stripe tokenizer. The stripe tokenizer will create a token. If the
creation of the token is successful then the onSuccess() function will execute and
an API call is made to our Spring Boot Web Server to create the reservation and
to create a charge line. The reservation API call is launched from an
asynchronous task that doesn’t block the main UI thread. On the server, we
utilize stripe to create a charge line. A charge line is what executes the actual
charge and and creates a receipt that can be viewed on the stripe dashboard.

SDDEC18-17 46

Credit Card Activity

The credit card activity uses the Stripe credit card widget to handle user input. The stripe
import for the credit card widget is as follows:

Stripe import

Figure 21: Stripe Imports

Stripe Card Widget

Figure 22: Stripe Card Widget

Stripe Card Validation

Figure 23: Stripe Credit Card Validation

When the user clicks the Add Card button, an asynchronous task is created to send the
valid credit card to the web server for storage.

History Activity

The history activity is used to display a list of all previous reservations. A specific
reservation in the list may be selected to view additional details. The initial details that
are visible in the list of reservations include: laundromat name, laundromat address, and
reservation code. The expanded reservation displays additional information including:
appliance number, start time, end time, and a receipt with the price. An asynchronous
task is created to retrieve all previous reservations, given a customer id.

SDDEC18-17 47

Future Activity

The future activity is used to display a list of all current reservations. A specific
reservation in the list may be selected to view additional details. The initial details that
are visible in the list of reservations include: laundromat name, laundromat address, and
reservation code. The expanded reservation displays additional information including:
appliance number, start time, end time, and a receipt with the price. An asynchronous
task is created to retrieve all current reservations, given a customer id.

5.1.2 Completed Android Administrator Class Diagram
The final version of the administrator class diagram is shown below:

Figure 24: Complete Administrator Class Diagram

SDDEC18-17 48

Login Activity

The login activity requests an email address and pass input form the administrator in
order to validate a login. When the admin clicks the login button, an asynchronous task
is created to make an API call to login. On success, the API returns a valid administrator
ID or -1 on error. If the administrator fails to login, both input fields display an error
message indicating an incorrect email or password. Otherwise they will be taken to the
home page (Map Activity). An administrator account is not made through the mobile
application. An administrator account must be added directly to the database. With future
expansion, a website administrator dashboard will be used manage admin accounts.

Map Activity

The Map Activity is the home screen of the application. Similar to the customer flow,
administrators are also provided with a screen displaying Google Maps along with a set
of laundromat markers. The administrator may click on a laundromat marker to see a
toolbar of analytics options for the laundromat. Those include: energy data, active data,
and override capabilities.

Energy Activity

The Energy Activity uses a pie chart to display how much energy each appliances uses
with respect to the total energy consumption. The scope of our project does not include
building hardware to calculate the energy consumption per machine. Rather, we were
asked to develop a user interface proof of concept that could be used with future
expansion.

Active Machines Activity

The Active Machines activity uses a horizontal bar chart to display how many appliances
are active for each hour of the day. For example, the graph will display if 7 appliances
were reserved at 1:00 pm, but only 2 appliances were reserved at 9:00 pm. Similar to the
energy activity, the scope of our project does not include registering more than one
device. Instead, we use the reservation data as a reference for populating the bar chart.
With future expansion, both graphs may be of benefit to our clients.

MPAndroidChart Library

The MPAndroidChart library is an android and iOS library built for implementing
professional and high-quality visual data displays. Our team used the library to
design both the pie chart and horizontal bar chart for the energy activity and
active machines activity.

5.1.3 Completed Android Customer Interface
The complete customer android interface is shown below. For a more detailed view of
each screen, please refer to the operation manual in section 6.

SDDEC18-17 49

Figure 25: Complete Customer UI

5.1.4 Completed Android Administrator Interface
The complete customer android interface is shown below. For a more detailed view of
each screen, please refer to the operation manual in section 6.

Figure 26: Complete Administrator UI

SDDEC18-17 50

5.1.5 Completed iOS Customer Class Diagram
As mentioned in the design section, a class diagram helps document the software
architecture and serves as a mapping of the structure for our reservation system.The
final version of the customer class diagram is shown below:

Figure 27: Complete iOS Customer Class Diagram

Login View Controller

The login view controller presents a form for a user to login. The login form uses an
email and password to validate who the user is. When the user submits a user and
password they are sent to the server using a URLSession. If the login was successful
the user’s first name, last name, customer id, whether they are an admin and their
favorite laundromat location if they have one. In case that the login fails because either
the user doesn’t exist of the user entered a wrong password the user will be prompted to
retry their email and password. Once a successful user has logged in the user will be
presented the map view controller.

If a new user has downloaded the application they can register. By tapping the “SignUp”
button in the login view the user will be presented a form that accepts values such as
first name, last name, email, and password. After the user enters the required
information it will be send to the service using a URLSession. After a user is successfully
create on the server the same information if returned as a login and the user to
presented the map view controller.

SDDEC18-17 51

Map View Controller

The map view controller is the main screen that the user will interact with. The user will
be presented with a screen showing the google maps sdk. The map is populated with
banks, atms, and laundromats in the users area and the location of the banks, atms, and
laundromats are all stored on the backend. We use openstreetmap.org to fetch all these
locations. To make sure that the fetching of all these locations don’t block the main
thread a URLSession is used to obtain the required information to display the icons on
the map. For a user to make a reservation they have to select laundromat location which
is represented on the map by a washing machine. Tapping a laundromat will popup a
bar on the bottom of the map and in that bar is another button with a washing machine
as the icon and this will take the user to the reservation form

Reservation

The required information that is needed for a user to create a reservation are the
following: the date of the reservation, the start and end time of the reservation,
number of washers, and the number of dryers. As the user is inputting this
information an URLSession will be created to retrieve a live value that shows the
user the current price of the reservation. This price amount will be updated
whenever the user changes the amount of washers or dryers and the length of
the desired reservation is used to make the price calculation. Once the user
finishes inputting the required information they can submit the reservation which
is sent to the backend for the payment to authenticated by Stripe and the
reservation to be stored in the database.

Stripe Payments

The Stripe SDK is used to authenticate a payment for a reservation submitted by
the user. For a more detailed summary on why we use the Stripe SDK reference
android customer class diagram section of the paper.

Token Creation

Stripe provides a function to create a token given a credit card. The
implementation is below. In the code below a token is returned from the
provided Stripe function. After a token is obtained a reservation can be
sent to the backend to be processed and authenticated.

Figure 28: iOS Stripe Tokenizer

SDDEC18-17 52

History View Controller

The history view controller displays a list of past reservations made by the current user
user logged in. For each reservation in the list the start time, end time, reservation date,
appliance number, and the code that was required to use the machine. The list of past
reservations is fetched from the server using a URLSession so it doesn’t block main
thread.

Current View Controller

The current view controller displays a list of current reservation made the current user
logged in. These reservations that have start dates and start time in the future. For each
reservation in the list the start time, end time, reservation date, appliance number, and
the code required to use the machine. The list of current reservations is fetched from the
server using a URLSession so it doesn’t block the main thread.

5.1.6 Completed iOS Administrator Class Diagram
The final version of the administrator class diagram is shown below:

Figure 29: Complete iOS Administrator Class Diagram

Login View Controller

The login view controller presents a form for a user to login. The login form uses an
email and password to validate who the user is. When the user submits a user and
password they are sent to the server using a URLSession. If the login was successful
the user’s first name, last name, customer id, whether they are an admin and their
favorite laundromat location if they have one. In case that the login fails because either
the user doesn’t exist of the user entered a wrong password the user will be prompted to
retry their email and password. Once a successful user has logged in the user will be
presented the map view controller.

SDDEC18-17 53

Admin Map View Controller

The admin map view controller is the almost the same as the map view controller except
the admin is only shown the laundromats. When the admin selects a location they will be
able to look at statistics about the machines at that location such as energy used by
each machine, how long each machine has been active, and override capabilities.

Active View Controller

The active view controller shows a bar graph using Charts to show how many machines
are active for each hour of the day. Right now in the application the date that is shown in

the bar graph is just placeholder. In a real product environment the data would be
from a real machine and pulled from the backend.

Energy View Controller

The energy view controller shows a pie chart using Charts to show the amount of energy
used by each machine in the laundromat. Same as for the active view controller the data
being displayed is just a placeholder. In a real product environment the data would be
from real machines and pulled from the backend.

Override View Controller

The override view controller is a list of machines at the selected laundromat. The
administrator is able to override a machine by shutting the power off or on.

Charts

Charts if the library used to create the bar graph and pie charts for the active
view controller and the energy view controller. This library is the same as the
android MPAndroidChart library just written in Swift for the iOS platform.

SDDEC18-17 54

5.1.7 API Table
To send and receive information on the Android and iOS mobile application, several
APIs were implemented to communicate with the Web Server. The following APIs were
used in the final version of our prototype:

API Description

http://18.191.155.90/login/

username/password

Sends a username and password to the
Spring Boot Web Server to check for
validation. If valid, the API returns a valid
customer Id or -1

http://18.191.155.90/cardInfo/customerId Sends a customer ID to the Spring Boot
Web Server to retrieve credit card
information. If valid, the API returns card
information

http://18.191.155.90/signup/

firstname/lastname/email/

password

Sends a first name, last name, email, and
password to the Spring Boot Web Server
to register a user.

http://18.191.155.90/

reservation/price/

reservationDate/reservationAt/

reservationUntil/numWashers/

numDryers/locationId

Sends reservation input data to the Spring
Boot Web Server to determine the
reservation price

http://18.191.155.90/

appliance/locationId/

reservationDate/

reservationAt/reservationUntil

Sends a location, reservate date and
reservation time to the Spring Boot Web
Server to retrieve a list of appliances

http://18.191.155.90/laundromat/list Retrieves a list of laundromats in Ames, IA

http://18.191.155.90/bank/list Retrieves a list of banks in Ames, IA

SDDEC18-17 55

http://18.191.155.90/atm/list Retrieves a list of ATMs in Ames, IA

http://18.191.155.90/reservation/history Retrieves a list of previous reservations

http://18.191.155.90/reservation/future Retrieves a list of current (future)
reservations

http://18.191.155.90/

reservation/add/customerId/

reservationDate/

reservationAt/

reservationUntil/

numWashers/

numDryers/locationId/price

Sends reservation input data to the Spring
Boot Web Server to create a new
reservation

Table 7: API List

SDDEC18-17 56

5.2 Backend Implementation

5.2.1 Server Layers

The back end development team has put together a server that serves REST requests
from both the mobile applications and the IoT interface that will be connected to the
hardware. The design we have been working on to serve these requests is a Spring
Boot application managed by Gradle. There are three main layers to the back end, as
well as connection to a database and Spring Security. The server layer architecture
diagram is shown below:

Figure 30: Server Layer Architecture Diagram

5.2.2 Controller Layer

The first layer of the application is the Controller layer. This layer defines what REST
requests the back end will be able to serve. It is divided up further into components,
where each component serves a specific object that is mapped directly to its own table in
the database. To interact with the Controller layer, requests need to be authenticated via
Spring security. Without authentication, a request will not be served. This Controller layer
calls the next layer, the Service layer, to serve responses back to the client.

SDDEC18-17 57

5.2.3 Service Layer
The Service layer is used to do most of the heavy lifting for processing requests. The
Service layer is also divided into components, where each component serves a specific
object corresponding to a database table. After a Controller calls the Service that
corresponds to the request that needs processed, that Service will call the Repository
layer (the third layer) to access, create or insert data stored in the database. Any further
processing is then done in the Service layer, any edits are saved to the Repository layer,
and the processed response is then passed back to the Controller layer.

5.2.4 Repository Layer
The Repository layer connects with the database and provides access to the data stored
within. The Repository layer is also divided up into components, where each component
serves a specific object by pulling it out of the corresponding table. The Repository layer
in this application uses a JpaRepository that allows the direct manipulation of objects in
the database via the Java object defined as an Entity that directly maps the object to the
database table. Therefore, the manipulation of the database tables can be done directly
through object manipulation in Java, and the results can be saved back into the
database.

5.2.5 Databases
The Database is also a very important portion in the back end. There are actually three
different databases, defined based on the stage of development the back end is
currently in. For local development, the back end is using an H2 database embedded
into the Spring Boot application itself. This database is automatically spun up according
to the specifications of a schema, and is automatically populated with test data. The
Database schema is shown below:

SDDEC18-17 58

Figure 31: Database Schema

This embedded database also ceases to exist after the back end powers down, and any
changes to the data stored in the database are lost. Therefore, the embedded database
is only viable for development and some initial testing with the mobile applications. The
second database is a remote MariaDB database which was set up for this senior design
project. The benefits of using this database are that data changes are persisted
throughout multiple restarts of the back end, and it is remotely hosted which allows
testing for the configuration of external sources before the third database is configured.
This remote database is used when the back end is set up on a remote server and
allows the mobile applications to hit it from actual phones. This will provide the basis for
our User Acceptance Testing environment. The third database previously mentioned will
be a production database, and will be like the remote database except for the fact that it
will be hosted on Amazon Web Service and it will run the production data for the project
once it is in the final stages of completion.

5.2.6 Spring Security
The final portion of the back end is Spring Security. Spring Security allows authentication
and authorization for our application, as well as preventing from many types of attacks
such as clickjacking, cross site request forgery, session fixation, etc. It is integrated with
the Controller layer, but it sits separately from the other layers and is integrated with the
application’s custom user storage mechanism.

SDDEC18-17 59

5.3 Hardware Implementation

5.3.1 GPIO Pins
To implement a locking mechanism with a Raspberry Pi 3 microcontroller, a 16x2 LCD
Screen and a 9-digit keypad, GPIO pins needed to be defined. A GPIO pin is a
general-purpose input/output pin that is part of the Raspberry Pi 3. In fact, the Raspberry
Pi 3 contains a 40-pin GPIO header that may be configured. For the LCD pin to work, we
used the following LCD pin configuration:

Figure 32: LCD Pin configuration Figure 33: Keypad Pin Configuration

The keypad matrix represents the possible input values that can be obtained from the
keypad. Our team purchased a 9-digit keypad with two special characters: *, #. The
keypad contains four rows consisting of 3 buttons per row. Therefore the keypad matrix
is: [[1, 2, 3], [4, 5, 6], [7, 8, 9], [“*”, 0, “#]].

5.3.2 LCD Screen
The 16x2 LCD Screen is used to display greeting messages and to display each
reservation code digit entered by the customer. We wanted to display a welcoming
message to the user based on the current time of day. The python script for the LCD
screen is shown below.

Figure 34: LCD Welcome Script

SDDEC18-17 60

5.3.3 Keypad Response
To begin entering a reservation code, the user is prompted by the LCD screen with
instructions for beginning the process. The function tied to this is the input_response()
function. The input_response() function is used to determine what interaction the
customer would like to take. For example, the user may choose to enter a reservation
code, they may choose to cancel the current input, or they may choose to submit the
reservation code input. The python script for the input_response() function is shown
below:

Figure 35: Keypad Prompt Script

5.3.4 Keypad Input

As the customer enters the reservation code, we must obtain each input value. To
receive keypad input from the customer, the key_input() function is required. The
key_input() function is shown below:

Figure 36: Keypad Input Script

SDDEC18-17 61

5.3.5 Relay Module

To complete the hardware module of our project, a 4-channel relay module needed to be
implemented with the Raspberry Pi 3. Configuration for the 4-channel relay module only
required to relay module pins. This is because, only two commands were needed for
RELAY_IN_x. The RELAY_IN_x represents the RY1 and RY2 pins shown shown.

Figure 37: Relay Module Pins

As mentioned earlier, the Raspberry Pi 3 microcontroller communicates with AWS IoT to
send and receive commands. The microcontroller receives time information from AWS
identifying the time remaining on the washing machine before it powers off. The
microcontroller must also send on/off status to AWS. A function called action() was
written to handle the parsing of different inputs. A JSON formatted command is parsed
by the function to retrieve the on/off status of the washing machine. The entire action()
function is shown below:

Figure 38: Action Function

SDDEC18-17 62

5.3.6 Completed Locking Mechanism

The completed locking mechanism is shown below. The final prototype version consists
of a 9-digit keypad, a 16x2 LCD Screen, a Raspberry Pi 3, and a 4-channel relay.

Figure 39: Completed Locking Mechanism

SDDEC18-17 63

6. Testing Plan, Process and Results
6.1 Mobile Application Usability Testing and Validation

6.1.1 Usability Testing
Usability testing is a common technique used to test how well a task can be performed
by real customers. To implement a usability test, two items are required: A usability test
document and a user.

Usability Test Document

A usability test document is a document that identifies the steps or actions that are to be
completed by a user. Each step is marked with criteria that can either be passed or
failed. For example, a step must be completed within 1 minute or a step must be
completed in under 2 clicks. Our team put together the following usability test document:

Figure 40: Usability Test Template

SDDEC18-17 64

Usability Test Template

Our usability test template identifies 10 steps that must be completed by a real user. The
10 steps reflect actions that are to be performed on both the android and iOS mobile
applications. Each step identifies pass fail criteria. It is expected that step 1 be
completed within 5 minutes. Creating an account involves registering a first name, last
name, email, and password. The Login step should be completed within 2 minutes. We
gave extra time to account for autocorrect and grammar issues when using a mobile
keyboard. It is expected that the credit card information be added within 5 minutes.
There are 5 inputs required and we provided a fake card as shown below. Selecting a
laundromat should be completed within 5 minutes, including time for zooming in on
google maps and selecting a laundromat marker. Step 6 shall take less than 5 minutes
to complete which includes submitting a reservation date, start time, end time, and
number of appliances. Step 7 should take less than a minute as it requires the user to
exit out of the confirmation popup. The 8 shall take less than one click to view. If the user
doesn’t click the correct icon, then our user interface needs to be updated. Step 9 should
take less than 1 minute as the user only needs to enter the reservation code into the
keypad. The final step should take less than 1 minute since the only requirement is to
turn on the appliance.

Usability Testers

Over the course of two weeks, our team tested several potential users including friends
and family. The results from the usability tests can be seen as follows.

Figure 41: Usability Test 1 Figure 42: Usability Test 2

SDDEC18-17 65

Figure 43: Usability Test 3 Figure 44: Usability Test 4

6.1.2 Usability Testing Results
Interview

After each test came to end, our team conducted a 20 minute interview to identify why
different steps failed or took longer than expected. The results from those interviews are
explained below.

Test 1: The first test resulted in 3 failed steps. For step 1, the android application didn’t
have a working button that would navigate the user back to the login screen which
through the user off. Step 8 asks the user to click the current reservation button on the
bottom navigation bar of the mobile application. The previous and current reservation
button icons were a bit confusing and caused the wrong reservation list to load. When
the user enters a reservation code, they must enter * (star) # (digit) # (digit) # (digit) #
(digit) * (star) into the keypad. An example is: *1234*. The user was unaware that they
needed to enter a * (star).

Test 2: After the first test, our team fixed the login issue as that was a programming error
rather than a usability issue. The second test resulted in 2 failed steps. Similar to the first
user, step 8 and step 9 failed due to a lack of clarity with both the reservation icons and
required keypad input.

SDDEC18-17 66

Test 3: The third test resulted in 3 failed steps. Unlike the previous users, our third tester
failed step 5. Step 5 asks that the user click the laundromat icon on the bottom slider
drawer after selecting a laundromat location. It wasn’t clear to the user that the
laundromat icon needed to be clicked to open the form.

Test 4: The fourth test resulted in 1 failed step. Similar to the first two tests, the user was
not aware that the keypad input needed a * (star) before and after the reservation code
numbers.

After each interview was conducted, a correct demonstration of all steps were provided.
Once the correct demonstration was given, each tester was asked to re-evaluate the
steps that were done incorrectly. Positive feedback was given once the steps were made
clear.

Validation

Validation is the process of evaluating a product with tests and use cases to determine if
the product meets stakeholder requirements. In our case, mobile validation is the
process of evaluating the android and iOS mobile applications to determine if the
product meets our clients requirements. The results from the usability test indicate that
there are in fact several areas of misunderstanding or confusion while using the mobile
application. The primary areas for concern include: viewing the current and previous
reservation information and entering the numpad. To account for the areas of concern,
new icons were created to differentiate between history and current reservations. Due to
the current prototype implementation, changes will not be made to the numpad.
However, future implementations and expansions shall include a keypad with an “enter”
button to eliminate confusion with special characters.

6.2 Mobile Application Unit Testing and Validation

6.2.1 Unit Testing
To test the accuracy of our mobile applications, android and iOS unit tests were written
to cover login, registration, map display, and reservations. The unit tests and results are
shown in the table below:

Unit Test Description Expected Actual

is_login_admin() Given a valid administrator
account, verify that the API
returns a valid administrator ID

True True

is_login_customer() Given a valid customer account,
verify that the API returns a valid
customer ID

True True

SDDEC18-17 67

is_login_invalid() Given an invalid account, verify
that the API returns an error code
of -1

-1 Null

is_registration_valid() Given a valid registration entry
form, verify that the API creates
the user account by returning a
customer JSON

{“firstname”:
“michael”,
“lastname”:
“jones”, “email”:
mjones@gmail.
com”,
password:
“password”}

{“firstname”:
“michael”,
“lastname”:
“jones”,
“email”:
mjones@gmail
.com”,
password:
“password”}

is_registration_valid_e
mail()

Given an invalid email address,
verify that the application displays
an error

False True

is_registration_valid_fir
stname

Given an invalid first name with
alphanumerics, verify that the
application displays an error

False True

is_registration_valid_las
tname

Given an invalid last name with
alphanumerics, verify that the
application displays an error

False True

is_registration_valid_e
mpty_firstname()

Given an empty first name, verify
that the application displays an
error

False False

is_registration_valid_e
mpty_lastname()

Given an empty last name, verify
that the application displays an
error

False False

is_registration_valid_e
mpty_email()

Given an empty email, verify that
the application displays an error

False False

is_registration_valid_e
mpty_password()

Given an empty password, verify
that the application displays an
error

False False

SDDEC18-17 68

is_registration_valid_pa
ssword_length

Given a password of length 6 (or
higher), verify that the application
approves

True True

is_registration_invalid_
password_length

Given a password of length 1,
verify that the application displays
an error

False True

is_card_valid Given a valid test Stripe credit
card, verify that the card
validation approves

True True

is_card_invalid Given an invalid credit card, verify
that the card validation
disapproves

True True

is_laundromats_receive
d()

Calling the laundromat API should
return a json array of length 3

3 3

is_atms_received() Calling the atm API should return
a json array of length 9

9 9

is_banks_received() Calling the bank API should return
a json array of length 6

6 6

is__reservation_price_v
alid()

Given a valid reservation of 2
machines for 1 hour, verify that
the price is $4

4 4

is_reservation_calendar
_valid()

Given a calendar date in the past,
verify that the application displays
an error

False True

is_reservation_time_val
id()

Given a reservation end time that
is before the reservation start
time, verify that the application
displays an error

False True

is_reservation_num_ap
pliances_valid()

Given a request for 1000
machines, verify that the
applications displays a warning

False False

SDDEC18-17 69

and prevents a reservation from
being created

is_reservation_valid_ca
rd()

Given a valid reservation, but an
invalid credit card, verify that the
applications displays a warning
and prevents a reservation from
being created

False False

is_reservation_valid() Given a valid reservation and a
valid card, verify that a
reservation is made and that a
charge has been created on the
stripe dashboard

True True

is_many_historical_res
ervations_received()

Calling the history API on a user
with >= 1 previous reservations
should return a json array greater
than 0

True True

is_no_historical_reserv
ations_received()

Calling the history API on a user
with no previous reservations
should return a json array of 0

True True

is_many_current_reser
vations_received()

Calling the future API on a user
with >1 current reservations
should return a json array greater
than 0

True True

is_no_current_reservati
ons_received()

Calling the future API on a user
with no current reservations
should return a json array of 0

True True

Table 8: Mobile Unit Test Results

SDDEC18-17 70

6.2.2 Unit Testing Results
Out of the 28 unit tests that were run, 7 unit tests failed and 21 unit tests passed. The
success rate of our unit tests was 75% and the failure rate of our unit tests was 25%.

Validation

The results from the unit test indicate that the core functionality of the application works
as expected: A user is able to create an account, sign in, add a credit card, and make a
reservation. The unit tests do however identify several boundary exceptions that must be
handled before a production release can be launched. Several exceptions occurred with
the login and registration portion of the application, primarily with invalid user input. The
email address is a core requirement for our mobile application as it is the primary contact
information for the user and is where billing information will be emailed to. Currently, the
email address isn’t being validated, despite the implementation of an email-only input
field. Likewise, the first name and last name input fields aren’t being validated for real
names. When running the mobile application on a real device, a keyboard appears with
only valid characters. When running the mobile application on an emulator or test device,
additional characters may be entered. Safety checks should be implemented to handle
these errors. The second set of errors involve the reservation fields. Since the mobile
application allows for only one date to be entered, there is no date rollover if the end
time is earlier than the start time. This means that if a user enters a start time at 5 pm
and an end time at 3 pm on January 1st, the reservation will be made from 5 pm to 3 pm
on January which isn’t possible. The correct reservation should either be from 5 pm
January 1st to 3 pm January 2nd or display an invalid input message. Currently, it is also
possible to select a date that has happened in the past. A user should not be allowed to
select a date that has already occurred when making a reservation. Once these changes
have been made, the application’s validation will be at 100% based on our test criteria.

6.3 Backend Server Testing and Validation
The test plan for our server was tightly coupled to the design due to our foresight in ensuring a
modular structure. We partitioned our server into three components: controller, service, and
data access layers. We primarily placed our logic and heavy lifting in the service layer, allowing
our controllers to simply call on the service layer to access, manipulate, and return the desired
data. Thus, our testing plan revolved around two main components: unit testing each method in
the service layer as well as each customer query/method in the data access layer. We only had
to test custom queries in the data-access layer as we integrated Java’s JPA API to handle basic
data accesses, such as finding records by ID in the database. This allowed our data-access
layer to be lightweight. Due to time constraints, the majority of our server testing followed ‘happy
path’ ideologies to ensure core functionality before handing off the product to our clients.

SDDEC18-17 71

6.3.1 Service Layer
As previously mentioned, most of the heavy lifting was placed into the service layer by
design. Thus, this was the focal point of our backend testing and took up the majority of
time allotted to testing for the backend team. Each layer of our service was partitioned
into components corresponding directly to the tables in the database.

Due to the design of our server, we decided to unit test each method in each class using
mockito. Mockito allowed us to isolate the SUT (system under test) by eliminating each
outside dependency and test only the functionality within each method. We mocked the
data access layer in each method and, using mockito, knew exactly what would be
returned by the data access layer in each method call. This is equivalent to hardcoding
the results of the queries being returned to the calling entity, in this case the methods in
the service layer. By doing this, we ensured we were simply testing functionality in the
service methods and not relying on outside dependencies.

To automate our testing and simplify continuous integration and testing, we used the
JUnit testing framework. Each method in our service layer classes corresponds to at
least -- and in some cases, multiple -- JUnit test cases. Implementing JUnit allowed us to
write test cases with expected values. Due to the automated running nature of the
framework, we could make changes to the methods at the request of our frontend team
and run the JUnit tests for the specific class at the click of a button and confirm the
integrity of the methods instantly.

6.3.2 Data-Access Layer
To test our data-access layer, we utilized Spring Boot’s TestEntityManager as well as
JUnit to automate the running of our unit tests. The methods in our data-access layer are
essentially endpoints for custom queries in our database. As previously mentioned, JPA
provides you with basic queries, such as searching for records by their ID in the
database. However, many custom queries were essential to provide needed functionality
in the service layer. Thus, it was essential to put these queries under test independent of
the outer dependencies.

Rather than make use of our external database or embedded database, we used a
TestEntityManager to simulate the use of an external database. The external database
was infeasible for unit testing as the client eventually will not have access to that, making
the tests irrelevant. We could have used our embedded H2 database, but any changes
the data could have broken our tests. By using the TestEntityManager, you are able to
define sets of data that are relevant to the queries under test and persist them, giving
you full control of the data being accessed by your autowired repo layer. Thus, using
java code, you can create and insert data, and then call your repo methods which will
operate with the data persisted by your code in that class. This made it rather trivial to
define expected results, call the method under test, and test for equality using JUnit.

SDDEC18-17 72

6.4 Hardware Component Testing and Validation
The hardware testing procedure was focused on two aspects in terms of the hardware
implementation: 1. Onboard scripts testing and 2. Circuit functionality testing.

6.4.1 Onboard Scripts Testing

As previously mentioned in the implementation sections, a Raspberry Pi 3 Model B is
used for the monitoring feature to the washing machine. In order to get a robust and
reliable working prototype, we have performed several tests to the embedded scripts
which are running on the Raspberry Pi.

The GPIO and Networking scripts are written with Python 3.6, and the “calling-methods”
along with configuration setups are written with Shell scripts on the Unix-based operating
system, Raspbian. The testing procedure was separated into two phases where the first
comes with Python scripts testing and second as Shell scripts testing.

Python Scripts Testing:

There are a few of testing frameworks which we could adapt into our testing
implementation. The one we used was simply the “unittest” which comes along with the
Python application. Recall that the GPIO and Networking scripts was written in Python,
we performed unit tests to these two “units” of the script.

The GPIO functionalities were tested by firstly creating mock Python modules to perform
simple LED on/off testing as the fundamental setup of our test. Then we follow the
similar strategy (by creating mock modules) to test the “relay” module and LCD/Keypad
module. The mock modules would make sure that each module (relay, LCD, Keypad)
has the functionality and reliability as we intended. After several rounds of testing with
different parameters, the result showed that the prototype is able to perform as what we
defined in the implementation section in terms of GPIO inputs/outputs.

The Networking scripts were tested by associating with the test-panel provided by
Amazon Web Services. Since the MQTT queue implementation was the core part of the
Networking scripts, AWS provides a test-panel on the IoT section which we could take
advantage of in our testing phase. The test-panel allows us to subscribe to the same
“topic” (channel in MQTT communication) via their web interface, in addition to that, we
can manually publish/receive messages to/from the topic. Thus, we have tested our
Networking scripts by creating “testing messages” through the test-panel. The result
showed that our Networking scripts are working smoothly as we intended.

SDDEC18-17 73

Shell Scripts Testing:

There are also some unit testing frameworks out there which we could taking into our
Shell script testing steps. However, since the only usage of Shell scripts in our prototype
was to provide an easier start-up of the Python scripts and “one-time” configurations, it is
enough to test the Shell scripts via several test runs to make sure that the scripts are
giving successful calls to our Python scripts. The results showed that the Shell scripts
can give us 100% successful calls to the Python scripts.

6.4.2 Circuit Functionality Testing

The circuit functionality testing is based on the breadboard circuits. Since the prototype
is still in the implementation phase, informal tests were performed instead of full product
usability testing. As a recall from the previous introductions, the circuit consist of three
major modules as well: relay component, 16*2 LCD screen, and a 3*4 matrix keypad.
The tests were separated into three steps respectively to the modules.

Relay Component

This is the key part of the prototype since it controls the power source of the washing
machine by toggling a 110V household power via magnetic circuit which is under control
of a 5V DC voltage. The Raspberry Pi is in its order to output the 0/5V DC voltage to the
relay as above. The tests are focused on getting a consistent result from the relay
module so that we get the fully control over the power source of the washing machine.
To accomplish this, a function generator and an oscilloscope were used for the test. For
the reason of safety during the testing phase, the function generator generates a
relatively low AC power (~10V sinusoidal waveform) which feeds into the relay module
as mentioned in previous sections. The oscilloscope probes were placed at the other
end of the relay to show the results. The Raspberry Pi outputs 5V DC toggle voltages to
the relay module via its GPIO ports. As the Raspberry Pi toggles the relay module,
oscilloscope shall present us the on/off power of the circuit. As a proof of correctness,
we performed such test under different voltages and time intervals in several rounds.
The results showed that the circuit is robust and reliable.

LCD Screen

The testing phase of this part was to ensure that the LCD screen has the ability to
present the intended messages. We simply wrote up a Python module to test different
messages and check the output from the screen. The tests also included some
“extreme” cases such as in a cold/hot environment (roughly between -10 to 40 Celsius
degrees). In addition to these, we tested the contrast adjusting under different
brightness. The result showed that, the LCD would work as intended when the
temperature maintains above 0 degree as bottom line. We were also able to adjust the
contrast of the screen to fit an indoor environment.

SDDEC18-17 74

Matrix Keypad

The keypad testing was all about the input correctness testing which includes single key
input correctness and multiple key input correctness. To test this, a testing Python
module was created to read keypad inputs and output the results in the console. As the
result showed, the keypad was able to give precise input readings and distinguish
consecutive inputs as intended.

SDDEC18-17 75

6.5 Requirements Verification and Validation

Functional Requirement Verification Validation

The mobile application shall
display local laundromats,
ATMs, and banks within
Ames ,IA

Usability Test

Code Inspection

Unit Tests:

is_laundromats_received()

is_atms_received()

is_banks_received()

The mobile application shall
login the customer upon a
successful login
authorization.

Usability Test

Code Inspection

Unit Tests:

is_login_customer()

is_login_invalid()

The mobile application shall
inform the user of a credit
card charge upon a
successful transaction
authorization.

Usability Test

Code Inspection

Unit Tests:

is_reservation_valid()

is_card_valid()

is_card_invalid()

is_reservation_valid_card()

When the customer clicks the
login button, the mobile
application shall send login
data to the server

Usability Test

Code Inspection

Unit Tests:

is_login_customer()

is_login_invalid()

When the customer clicks the
reservation button, the mobile
application shall send
registration data to the server

Usability Test

Code Inspection

Unit Tests:

is_reservation_price_valid()

Is_reservation_calendar

_valid()

is_reservation_time_valid()

Is_reservation_num_washers

_valid()

SDDEC18-17 76

is_reservation_valid_card()

is_reservation_valid()

When the customer clicks the
credit card button, the mobile
application shall send credit
card information to the server

Usability Test

Code Inspection

Unit Tests:

Is_card_valid()

is_card_invalid()

When the customer clicks the
reserve button, the mobile
application shall create a new
reservation.

Usability Test

Code Inspection

Unit Tests:

is_reservation_price_valid()

Is_reservation_calendar

_valid()

is_reservation_time_valid()

Is_reservation_num_washers

_valid()

is_reservation_valid_card()

is_reservation_valid()

If the login credentials are
invalid, then the mobile
application shall invalidate
the login and prevent them
from navigation onward.

Usability Test

Code Inspection

Unit Tests:

is_login_customer()

is_login_invalid()

If the registration credentials
are invalid, then the customer
shall not be registered as a
new user.

Usability Test

Code Inspection

Unit Tests:

is_registration_valid()

is_registration_valid_email()

Is_registration_valid

_firstname()

is_registration_valid

_lastname()

is_registration_valid_empty

SDDEC18-17 77

_email()

is_registration_valid_empty
_password()

is_registration_valid

_password_length()

is_registration_invalid
_password_length()

If the number of washers or
number of dryers exceeds the
available amount, then a
warning shall be displayed.

Usability Test

Code Inspection

Unit Tests:

is_reservation_num_applianc
es_valid()

If the customer's credit card
is declined, then a warning
shall be displayed.

Usability Test

Code Inspection

Unit Tests:

is_reservation_valid_card()

is_reservation_valid()

When the user enters a
reservation code into the
locking mechanism, the
locking mechanism shall
unlock the washing machine

Usability Test

Code Inspection

onboard_python_keypad_test
()

When a new microcontroller
has been purchased, the IoT
web service shall register a
new device.

Usability Test

Code Inspection

N/A

When the power command is
received, then the power to
the washing machine shall be
enabled.

Usability Test

Code Inspection

onboard_python_power_on_t
est()

onboard_python_power_off_t
est()

Table 9: Requirements Verification and Validation

SDDEC18-17 78

7. Security
Several security concerns were considered during the building of this prototype, namely the
need to be able to expand from normal HTTP to more secure HTTPS when communicating
between the phone applications and the web application. By using Spring Boot and Spring
Security, HTTPS is supported with several configuration changes. Since Spring Boot is also
built and served on a Tomcat server, that server can also be further configured to provide
deeper levels of encryption, specifically enabling specific versions of encryption protocols and
adding the potential to have a specified keystore for encrypting and decrypting communications
to enable HTTPS. By specifically enabling different encryption protocols, the client will have
more control over what is actually used when communicating, and unsecure protocols such as
SSLv3 or even TLSv1.0 to stay compliant with the PCI Data Security Standard.

The most prominent implementation of security in the prototype application is the inclusion of
Spring Security inside of the web application. By including Spring Security, the application is
configurable such that each and every method may have custom authentication on it if
necessary, and the application as a whole can support a customized authentication using
self-defined user roles and a managed database of custom users. While the implementation of
Spring Security was not finished for the prototype in regards to a customized implementation of
user authentication, it was added and initially set up, so all that needs to be done to complete
the authentication is to add the customization and define user roles. With this customization, the
web server prototype will be able to have different functionality enabled for administrative vs
normal users, locking down the web application’s REST endpoints both from a normal user
trying to access administrative controls and from a non-registered user trying to access data
from the endpoints.

While the main security increases between phone applications and the server exist from
implementing customized Spring Security authentication and sending REST requests over
HTTPS instead of HTTP, because credit card information is being sent inside some of the REST
requests it may be a good idea to hash and encrypt this personal information. There are several
ways of doing this, however as long as the phone applications and the web application server
both agree on the method of encryption or hashing then any form of further encryption and
obfuscation of credit card numbers may be utilized. This would be especially useful when
storing credit cards in the database, as databases are often very important targets for theft and
hacking and can yield concentrated amounts of personally identifiable data.

Since Stripe is used for appliance payments via credit card, part of the security Stripe enforces
is that mobile devices may not directly make payments to Stripe. Therefore, payments are done
by the application server, negating the need to send credit card information over the network to
a mobile device to necessitate a payment. This not only consolidates the times credit card
information is sent over the network to only when the credit card is updated, but also
compartmentalizes the information such that if a user’s mobile application or phone becomes
compromised, then they may still use the device without credit card information being leaked as
easily, slightly lessening the risk of credit card fraud.

SDDEC18-17 79

The final security concern covered by the prototype is how the web application server
communicates with the specific washers and dryers. The prototype implements communication
via MQTT queues hosted in AWS, with each arduino device having its own MQTT queue and
the web application listening on all MQTT queues for authentication information. By using AWS’
implementation of MQTT and AWS IoT connections, all MQTT traffic is secured by the TSLv1.2
encryption protocol, making it currently the most secure part of the prototype.

8. Project Management
8.1 Roles and Responsibilities

Name Role(s) Responsibilities

John Fleiner 1. Team Lead

2. Android Mobile Developer

3. Scrum Master

4. Requirements Specialist

● User Interface Design

● Android Implementation
and Development

● Android Usability Testing

● Android Unit Testing

● Integration with server
team

● Plan Agile Sprints and
Team Meetings

● Write Project
Requirements
Specifications

Ben Young 1. iOS Mobile Developer ● User Interface Design

● iOS Implementation and
Development

● iOS Usability Testing

● iOS Unit Testing

Thomas Stackhouse 1. Backend Lead

2. AWS IoT Backend
Developer

● Spring Boot Gradle Build

● Spring Boot Security

● AWS IoT MQTT
Implementation

SDDEC18-17 80

Casey Gehling 1. API Lead

2. Spring Boot Backend
Developer

3. Meeting Scribe

4. Mobile Server Integration
Lead

● Write APIs + queries for
mobile team

● Server Layer Testing

● Record documentation
from advisor, client, team,
and scrum meetings

Hongyi Bian 1. Hardware Lead ● Raspberry Pi 3
Microcontroller
Implementation

● LCD Keypad
Implementation

● 4-Channel Relay Module
Implementation

● AWS IoT Integration

● Hardware Circuit Design

Yuanbo Zheng 1. Hardware Engineer ● Raspberry Pi 3
Microcontroller
Implementation

● LCD Keypad

● Hardware Onboard
Control Testing

● Hardware Circuit Testing

● Hardware Security

Table 10: Roles and Responsibilities

SDDEC18-17 81

Mobile Development

John Fleiner and Ben Young led development efforts for the native android and iOS
mobile applications. Fleiner served as the team lead, handing communication, planning,
and integration efforts for each of our sprints identified in section 2. He was responsible
for ensuring that all team deadlines were met and that team contributions were evenly
distributed among the team. Fleiner performed development work for the android version
of the mobile application, including user interface design and implementation. Ben
Young was head of iOS mobile development efforts. Young’s efforts include the mobile
user interface design and implementation.

Backend Development

Casey Gehling and Thomas Stackhouse led development efforts for the Backend
implementation of our prototype. Thomas Stackhouse was responsible for setting up our
Spring Boot Web Server and AWS E2C instance. Stackhouse implemented automated
deployment to AWS and worked towards implementing Spring security. Casey Gehling
led integration efforts between the mobile application and Spring Boot Web Server.
Gehling was responsible for creating our teams database schema and for writing all APIs
needed by the mobile team for accessing information security from our database.

Hardware Development

Hongyi Bian and Yuanbo Zheng worked together to implement the locking mechanism
for our team’s washing machine. Hongyi Bian led hardware development efforts for the
hardware circuit design that was used to attach our Raspberry Pi 3 microcontroller, LCD
screen, keypad, 4-channel relay module, and washing machine. Yuanbo Zheng led
hardware testing efforts for both the onboard script testing and circuit functionality
testing. Zheng also helped with the hardware circuit design and implementation.

SDDEC18-17 82

8.2 Projected Timeline
During the first semester of Senior Design, our team attempted to plan our project to accurately
convey work requirements over the course of two semesters. Our team initially proposed a
timeline that is shown below:

Figure 45: Projected Timeline

Development Phase

We initially planned on having 3 major second semester phases: Development phase,
Testing phase, and Deployment phase. The testing phases requires development efforts
from all three teams: mobile, hardware, and backend. When the timeline was created,
our team didn’t plan on redesigning the mobile application’s user interface. Therefore, it
was expected that additional time could be allocated to the development of each screen.
The timeline planned for approximately 1 week per screen. Like, at the time of the
proposal, the specific details for the locking mechanism hadn’t been hashed out. We
knew that keypad and LCD integration and power source control was needed, but the
information related to scripting and soldering was absent. The spring boot integration left
out technical details as API documentation hadn’t been written by our team to identify
what data must be sent and received by the mobile application.

SDDEC18-17 83

Testing Phase

Our team wanted to have development completed by the end of October so that a month
could be given to testing all three components of our project. 30 days were allocated to
mobile unit and performance testing, hardware circuit and onboard testing, and server
unit testing.

Issues with the Proposed Timeline

The development phase described above has many inconsistencies and unknown
variables that affected how well we would be able to execute everything. First, our team
opted to redesign the user interface so that we could present a professional looking
application. Prior to this decision, the application didn’t meet our non-functional look and
feel requirement. Due to the redesign, our timeline had to be re-thought out.
Furthermore, our team opted to utilize the Agile development process for second
semester to mitigate risks and issues associated with communication and management
from first semester. By implementing Agile, we were able to identify with much better
accuracy and consistency what tasks need to be completed in order to meet our
incremental planning goals. The mobile application redesign allowed our team to think
about the APIs and database schema needed to make our product work. These
decisions gave us the ability to create a brand new timeline to help us deliver a final
working prototype with professional-like qualities.

SDDEC18-17 84

8.3 Actual Timeline

Figure 46: Actual Timeline

Depicted above, is our complete Agile-based Gantt Chart for the Senior Design 492. Our team
planned for two week sprints covering 3 increments. Increment 1 was divided into sprint 1, sprint
2, and sprint 3 where the primary goal was to complete all customer related requirements .
Increment 2 was divided into sprint 4 and sprint 5 where the primary goals were to implement
the administrator related requirements and to integrate the Stripe payment transaction platform
for both mobile and server. Increment 3 was divided into sprint 6 and sprint 7 where the primary
goal was testing and deployment.

SDDEC18-17 85

8.4 Lessons Learned
Many lessons were learned throughout senior design these last two semesters, but probably the
largest was to pay attention to the EC2 container base image when provisioning an EC2
instance on Amazon Web Services. Since the client had set up the AWS account, and it was on
a free trial for the first semester, our team’s EC2 instance was covered in the free tier. However,
during the second semester the free tier expired, and it was discovered that the Red Hat
Enterprise instance that we had been using was very expensive, up to the price of $50 a month
for a micro-sized instance. When the client caught this error and reported it to our team, we did
a quick price calculation and switched to using an Amazon Linux instance instead, saving over
$40 a month in instance costs. In the future, the team’s acting solution architect that was
working with AWS made sure to check estimated costs with a price calculation tool when
working with different AWS functionality so that the cost to the clients could be minimized.

Another lesson learned is that when learning new skills, such as soldering, our team should plan
for accidental damages as an anticipated risk. Neither of the hardware team members had
soldered before, and during the learning process the first keypad was accidentally damaged
such that the middle row of buttons did not work. Because of this accident, the client ordered
two replacement keypads so that if it happened again there would be a backup on hand. If this
had been thought of as a risk ahead of time, our team would have been able to be more
productive during the two weeks that we waited for the replacement keypad to arrive.

A third thing that our team learned while doing this project was the importance of defining all
portions of the overall architectural structure before implementation. By the second or third week
into last semester, the entire architectural structure for the project and how every portion was
going to communicate with each other was defined and known to work, with the exception of
connecting the hardware to the web application server. Originally it was thought that the use of
lambda expressions would work well such that the hardware would connect with AWS IoT and
would trigger lambda expressions to send REST requests to the application server to check
whether the washer or dryer would turn on or not. During the second semester, when
implementing the hardware portion it was discovered that using lambda was not going to work
the way our team wanted. Therefore, we instead implemented MQTT queue listeners on the
web application server so that the web application and the hardware devices could talk to each
other with two-way communication. However several weeks were spent implementing this after
it was found that this was the best way to communicate from the web application to the
hardware, and this threw off the schedule of other things that were planned on being done,
namely implementing customized Spring Security.

On the mobile application side of development, another lesson was learned. Constant user
interface redesigns due to continual improvement and feedback heavily increased development
time, especially since both the Android and iOS applications were developed separately with
different user interfaces but similar screen flows. This was done intentionally so that a better
design overall was able to be achieved, however because each application was developed
separately and they were later combined, a lot of time was spent re-working screen layouts and
user interfaces. It would have saved a lot more time if the full user interface was worked out
before the screens were fully implemented, and then the mobile developers could have worked
together to implement the design in both platforms and then worked from that base to develop

SDDEC18-17 86

the final screens. If this had been implemented, potentially 50+ hours of work may have been
saved from our mobile developers.

One defect that was found when testing the full system before the final client demo was that the
web server used the local time of the AWS instance when it was calculating if a reservation was
scheduled to turn on the washing machine or dryer. While this is not a problem when testing
locally on a laptop, or when run on an AWS EC2 instance where the time zone on the machine
has been set to the same time zone as the locations it covers, this is a problem if a single
instance or a single ECS cluster is servicing multiple different time zones. While this is a
relatively simple design defect to fix, it is a lesson learned when designing a high availability
system that has the potential to span multiple time zones.

The final lesson that was learned throughout this senior design process was that during
development remote schema management is very important. In this project any data that was
being used was test data and could easily be wiped out if necessary to update the remote
schema. However, as the schema evolved on the automatically spun up local instance that was
being used for testing by the backend development team, the remote database schema was not
updated in tandem. This resulted in unexpected errors when the finished web application server
was placed on the AWS EC2 instance, connected to the remote database, and the mobile
applications attempted to make calls to the server to create reservations. This could have been
solved by using flyway or another database schema versioning tool, by having the data models
fully fleshed out before implementation, or by testing the mobile applications with the server
running locally but connected to the remote database and manually keeping the remote
database up to date as the database schema evolved.

SDDEC18-17 87

9. Operation Manual
9.1 Overview
The operation guide contains the instructions needed to operate the Iot Remote Reservation
application for Laundromat Appliances mobile application to create a reservation for our
installed washing machine. The operation manual includes both an installation guide and a user
guide. Setup instructions are given for running our project. Step-by-step customer instructions
are provided for creating an account, for logging into the mobile application, for storing billing
information, for selecting a laundromat, for creating a reservation, for viewing reservation
receipts, and for obtaining the reservation access. Step-by-step administrator instructions are
also provided for logging into the mobile application, for selecting a laundromat, for viewing
energy consumption analytics, for viewing machine activity analytics, and for overriding active
machines.

9.2 Intended Users
The operation guide is intended to be used by laundromat customers of of clients Greiner
Jennings Holdings, LLC. The information found in this guide also applies to our teaching
assistants, professors, and panel members interested for demonstration purposes.

9.3 System Configuration
The IoT Remote Reservation Application for Laundromat Appliances mobile application runs on
both the the Android and iOS Operating systems. The android application is compatible with
Android 8.0 Oreo API 26. The iOS application is compatible with iOS 11.

9.4 Contingencies
Both the Android and iOS mobile devices require internet connectivity when in use. If the
product is to be released in the future, it is required that the administrators create a Stripe
account to obtain a new Stripe API key for payment transactions. It is also required that the
administrators create a Google Gmail Developer account to obtain a new Google Maps API key
for access to the map data.

SDDEC18-17 88

9.5 Getting Started
The getting started section explains how to setup and install Iot Remote Reservation application
for Laundromat Appliances

9.5.1 Prerequisites

Since the mobile application is a proof of concept and several important security features
have been left out of the implementation due to time constraints, an APK file and an IPA
file have not been generated. An APK file is the file format generated by Android to be
submitted to the Google Playstore. An IPA file is the file format generated by iOS to be
submitted to the App store. Since an APK and IPA file have not been generated, running
our project requires both Android Studio and Xcode IDEs to be installed. Xcode is the
official IDE for the Mac OS and requires an application laptop or desktop to run.

9.5.2 Application Installation

To download the source code for our project, please visit
https://git.ece.iastate.edu/sd/sddec18-17 to download a .zip file. Unzip the compressed
file. From the Android Studio Launch screen, click open project and navigate to the
directory where the unzipped project folder is located. Select the folder and open the
project. From the Xcode Launch Screen, click open project and navigate to the directory
where the unzipped project folder is located. Select the .xcodeproj file and open the
project.

9.5.3 Customer Steps

The following instructions include step-by-step processes for customers who are looking
to reservation a washing machine or dryer from a laundromat.

SDDEC18-17 89

9.5.4 Create an Account

On application launch, the user is directed to a login screen. To create an account, click
on the cyan button labeled “Register”. You will be directed to a screen shown on the
following page. The screen has several input fields that are required to be filled out.
Those fields include: First name, Last name, Email, Password, and confirm password.
Once all of the fields are entered, the user must click the “Confirm” button. Upon a
successful registration, the user will be redirected to the login screen. Otherwise, the
invalid fields display an error message.

Figure 47: Registration Screen

SDDEC18-17 90

9.5.5 Login to Account

Once a new account has been registered, the user may login to the application. To login,
enter both the email address and password used when registering for an account. An
example is shown below:

Figure 48: Login Screen

SDDEC18-17 91

9.5.6 Credit Card Information

After logging into the application, if it’s the users first time, then they will be prompted to
enter their credit card information. The information required includes: card number, card
expiration month, card expiration year, card CVC. The Stripe payment SDK is used to
validate the card information.

Figure 49: Credit Card Screen

SDDEC18-17 92

9.5.7 Home Screen

Once the credit card information has been validated and saved, the user will be directed
to the home screen. The home screen utilizes Google Maps to display nearby
laundromats, ATM machines and Banks. To begin a reservation process, click on one of
the dark gray laundromat markers shown on the map. Clicking on a laundromat marker
will display a dark gray bottom bar with a laundromat icon. Click the laundromat icon.

Figure 50: Home Screen

SDDEC18-17 93

9.5.8 Reservation Screen

Once the laundromat icon has been clicked from the bottom dark gray bar, a reservation
form will appear. The reservation form requires the following information: the date for the
reservation, the start time for the reservation, the end time for the reservation, the
number of washing machines needed, and the number of dryers needed. The price for a
reservation is $2 per hour per machine. The total will be displayed at the bottom. After
the form has been completed, click the “Reserve button”.

Figure 51: Reservation Screen

SDDEC18-17 94

9.5.9 Confirmation Screen

Once the reservation has been submitted successfully, the user will see a confirmation
popup on-screen. Otherwise, a popup will display a different error message depending
on the error, including if the credit card was declined or if the number of washing
machines or dryers is unavailable during the reservation period.

Figure 52: Confirmation Screen

SDDEC18-17 95

9.5.10 Current Reservations Screen

Once a reservation has been submitted, you may view all current reservation details by
clicking the third button on the bottom white toolbar. The third button looks like a watch
or clock. Clicking on the button navigates the user to a screen that displays a list of
reservations. The visible information includes the laundromat location, address, and
reservation access code. The reservation receipt can be viewed by clicking on one of the
rows in the list.

Figure 53: Current Reservations Screen

SDDEC18-17 96

9.5.11 Previous Reservations Screen

After a reservation time has closed, the reservation will no longer be visible from the list
of current reservations. Instead, the reservation will be moved to the previous
reservations screen. Previous reservations may be viewed by clicking the second button
on the bottom white toolbar. Clicking on the button navigates the user to the list of
previous reservations. The visible information includes the laundromat location, address,
and reservation access code. The reservation receipt can be viewed by clicking on one
of the rows in the list.

Figure 54: Previous Reservations Screen

SDDEC18-17 97

9.5.12 Access Code

Once the access code has been obtained by viewing the current reservation, enter the
reservation code into the keypad attached to the appliance.

 Figure 55: LCD Screen Figure 56: Keypad

Figure 57: Washing Machine Locking Mechanism

SDDEC18-17 98

9.5.13 Administrator Steps

The following instructions include step-by-step processes for administrators who need to
either view data analytics obtained from their laundromat or override appliances.

9.5.14 Administrator Login

An administrator does not need to register for an account via the mobile application.
Rather, the long-term plan is for administrator accounts to be created through a
developer portal on an administrator website. The website implementation was
out-of-scope for the project and was not requested by our clients. An administrator
account is currently created by directed appending a user via the MySQL dashboard.
Using administrator login and password information, the admin may login to the mobile
application.

SDDEC18-17 99

9.5.15 Administrator Home Screen

After logging into an account, the administrator is directed to a home screen similar to
the customer home screen. The admin may view nearby laundromats owned and
operated under their name. Clicking on a laundromat marker displays a bottom
navigation bar for viewing analytics for the selected laundromat.

Figure 58: Administrator Home Screen

SDDEC18-17 100

9.5.16 Energy Consumption Screen

Once a laundromat has been selected, the administrator may view different
characteristics about the laundromat. To view energy consumption statistics, click on the
light bulb button. The light bulb button directs the user to the energy consumption
screen. The energy consumption screen shows a pie chart that displays how much
energy each appliance uses relative to the total energy consumption of all appliances.

Figure 59: Energy Consumption Screen

SDDEC18-17 101

9.5.17 Machine Activity Screen

The administrator may also view statistics about how many appliances are running per
hour throughout the day. The information can be used to determine what times of the
day are the busiest and can be used in the future for price surging.

Figure 60: Machine Activity Screen

SDDEC18-17 102

9.5.18 Machine Activity Screen

The administrator is also given the privilege to override machines, depending on the
circumstance. For instance, if a customer does not activate their reservation code within
the first 15 minutes of their reservation, the appliance may forfeited to another customer,
as per the Terms of Service. To navigate to the override screen, the administrator must
click on the power button.

Figure 61: Override Screen

SDDEC18-17 103

10. Previous Work and Literature
Our project IoT Remote Reservation Application for Washers and Dryers strictly relates to the
general concept of the “Internet of Things” or “IoT”. The Internet of Things refers to a network
connection of physical devices such as vehicles, home appliances, and other commercial and
industrial products embedded with software, electronics, and sensors. In 1999, Kevin Ashton
from Auto-ID Labs at MIT coined the term “The Internet of Things”. Even though the term was
coined in 1999, the idea behind IoT was established well before that. In fact, Carnegie Mellon
University created one of the first examples of the Internet of Things when they built a Coca
Cola Machine that was connected to the internet1. Since 1999, the Internet of Things has grown
exponentially. According to a news post by IEEE SPECTRUM, there will be nearly 50 billion
individual devices connected as IoT network in 20202. The schema we have planned for our
project is a terminal-cloud-terminal model of internet of things. As mobile application and cloud
computing techniques have advanced, the internet of things has transformed towards mobile
devices and web services like AWS and BlueMix. This way, we can build a full-lifecycle, spatial
distributed IoT project which is similar to but not exactly like the ‘ancient drink machines’.

10.1 Market Survey: IoT Pay-Per-Wash Industry
The IoT Pay-Per-Wash Industry saw a spark in 2014 when the company Bundles
headquartered in the UK launched a clean clothes pay-per-wash business model that utilizes
the Internet of Things technology. The Bundles business model serves as a leasing scheme
were customers may lease a set of laundry appliances and pay a monthly fee based on their
appliance usage. The business model has been adapted by UW Huismeester, a company
based in the Netherland’s to their home caretaker service4.

10.2 Market Survey: Samsung Electronics Laundry Innovation
On January 7, 2018, Samsung Electronics announced their expanded laundry line up with a
new Premium Iot Compact Washer. The WW6850N washing machine uses IoT to connect to
Samsung’s SmartThings ecosystem. The washing machine collects usage data and implements
sensors to provide recommendations for the most optimal wash cycles based on color and
fabric type. The laundry planner feature gives customers the ability to manage how long a wash
cycle will take and they may further monitor the machine for performance data5.

10.3 Market Survey: Berendsen Microsoft Azure and IoT Hotel
Laundry Service
Last April, Microsoft released an article highlighting an interesting use by Berendsen of their
Microsoft Azure Cloud solution to develop an Internet of Linens. Berendsen implemented
Microsoft Azure IoT to track linen ID tags throughout the cleaning process of 1 million pieces of
linen that they launder and return to facilities everyday throughout Europe6.

SDDEC18-17 104

11. Prototype Commercialization
One of the first things for commercializing the prototype is AWS scalability. Currently, the
prototype exists on a single T2.micro EC2 instance running Amazon Linux. In a fully
commercialized application, it would be beneficial to run all of the instances in an ECS cluster
for scalability. A benefit of running the web application this way would be that auto scaling could
be enabled to spin up instances when they are needed and take down extra instances when
they are not. ECS clusters also have their own load balancer in front of all of the instances that
allows the scalability of dynamically allocated instances to work effectively without having to
change specific URLs in the mobile applications.

Another thing that the prototype needs polished is that currently the reservations use the time
on the machine the application is hosted on to actually check if it is time for the reservations or
not. This becomes a problem when the EC2 instances are not set to having the same time zone
as the laundromats that they are serving. To fix this temporarily, the client may manually set the
time zones on each of the EC2 instances that they set up. However, for long-term scalability
and growth, it would be more beneficial to refactor the method that checks if it is currently time
for a reservation to be active to a method that takes a time input and then checks the
reservation against that. Then the localized time for the washer or dryer the reservation is for
can be calculated via a time zone element that can be stored with each appliance in the
database, and then is checked against the reservation time for the appliance. This would allow
the web application to exist outside the need to be in the same region as the appliances,
allowing cross-regional support and redundancy.

Deploying to AWS is also slightly different from just running the web application normally. First,
the path from locally finding the AWS IoT keystore needs to be changed to the full path the
keystore will be located on the AWS instance. Then web application needs to be built into a jar,
and uploaded onto an EC2 instance in AWS. Finally, the team suggests running the web
application using ‘nohup’ to allow logging, and running it in the background so that when the
terminal logged into the EC2 instance loses connection the web application does not terminate.
To make this process easier, it would be beneficial to fix how the web application dynamically
loads the keystore so it may be bundled as a resource to the application, and look into
automated deployment solutions such as docker and terraform.

To keep the data that is sent to and from the web application secure, HTTPS will need to be
enabled both on the mobile applications and on the web application server. This may be done
on the server side via setting up the Tomcat instance that Spring Boot relies on to run, and the
mobile side can implement the connection to validate with the Tomcat instances running on
AWS. This will most likely need to be done using a common keystore that is shared among all of
the deployed AWS instances. The actual connection protocol that HTTPS will use should be
either TLSv1.1, TLSv1.2, or even TLSv1.3, as TLSv1.0 and SSLv3 are both considered
insecure.

SDDEC18-17 105

Implementing HTTPS goes a long way towards keeping personally identifiable data secure, but
it may be a good idea to further encrypt the credit card information. This could be done using
almost any existing encryption strategy, as long as the mobile applications and the web
application server agree on the implementation. Credit card data should also be encrypted
before it is stored in the database, as currently it is not and that is a definite security concern.

One of the many benefits of having a web application using Spring Boot is the ability to use
Spring Security to both secure endpoints on the application and to have customized
authentication. Currently Spring Boot is enabled on the web server, however customized
authentication and role management has not been implemented yet. By implementing this, the
commercialized application will be able to handle its own authentication not only on specific
methods but also on a blanket API bases across the application. This will help secure the
application by not allowing normal users to do admin specific privileges.

In regards to administrative roles being needed for specific API endpoints, the administrative
side of the web application also needs to be fleshed out when the prototype is commercialized.
Both of the mobile applications have administrative screens mocked up, but the data that fills
the screens is hard coded. This data needs to be pulled in from endpoints added to the web
application server, and any endpoints that do not currently exist that are necessary to support
administrative functionality will need to be added.

Speaking of functionality that needs to be added for commercial usage, the current prototype
uses a single MQTT queue to talk to a washer. To make the prototype commercially scalable,
there are several options depending on how the MQTT connections are decided to be
configured. Currently, the prototype uses a single MQTT queue per machine. However, it is
possible to have multiple machines using the same MQTT queue, and just include a machine
number in the message so each machine may sort through the different messages in the queue.
It is also possible to dynamically add and remove queues with the MQTT client chosen for the
prototype. A way of making sure a message is not picked up by two different web application
instances on the same MQTT queue also needs to be looked into, so as not to duplicate the
check on multiple web application instances.

The final improvement to transform the prototype into a commercially scalable product is to
update the arduino attached to the washers and dryers to be able to work with multiple
appliances at once. By having a one to one mapping from arduino to appliance, the scalability is
severely limited when it is possible to just have one arduino controlling several washers and
dryers. This could be implemented by entering ‘*’ [machine number] ‘*’ [unlocking code] ‘*’ with
using ‘#’ to clear input, or some similar method of expansion.

SDDEC18-17 106

12. References
1. Mackrory, Mike. “Building Java Microservices with the DropWizard Framework.” Sumo

Logic, 8 May 2017,
www.sumologic.com/blog/devops/building-java-microservices-with-the-dropwizard-frame
work/.

2. Shelat, Mihir. “Node.js for Enterprise Applications! Are You Kidding? - DZone Web Dev.”
Dzone.com, 2 May 2016,
dzone.com/articles/nodejs-for-enterprise-applications-are-you-kidding.

3. “Tomcat vs Jetty - Two Great Servlet Containers. Which One to Choose?”
DailyRazor.com, 20 Dec. 2017, www.dailyrazor.com/blog/tomcat-vs-jetty/.

4. “Internet Enabled Pay-per-Wash: a Model Offering Multiple Benefits.” Ellen MacArthur
Foundation,
www.ellenmacarthurfoundation.org/case-studies/internet-enabled-pay-per-wash-a-model
-offering-multiple-benefits.

5. Samsung U.S. Newsroom. “Samsung Expands Laundry Line Up with New Premium
Compact Washer.” Samsung Global Newsroom, Samsung Newsroom US, 8 Jan. 2018,
news.samsung.com/us/samsung-quickdrive-WW6850N-washing-machine-laundry-CES2
018/.

6. “Transforming Hotel Laundry Service with the Internet of Linens.” Microsoft Green Blog,
17 May 2017,
blogs.microsoft.com/iot/2017/04/13/transforming-hotel-laundry-service-with-the-internet-
of-linens/.

SDDEC18-17 107

http://www.dailyrazor.com/blog/tomcat-vs-jetty/
http://www.ellenmacarthurfoundation.org/case-studies/internet-enabled-pay-per-wash-a-model-offering-multiple-benefits
http://www.ellenmacarthurfoundation.org/case-studies/internet-enabled-pay-per-wash-a-model-offering-multiple-benefits

