

SDDEC18-17 1

Table of Contents
1 Introductory Material 5

1.1 Acknowledgement 5

1.2 Problem Statement 5

1.3 Operating Environment 6

1.4 Intended Users and Intended Uses 6

1.5 Assumptions and Limitations 7

1.6 Expected End Product and Other Deliverables 8

2 Proposed Approach and Statement of Work 9

2.2 Functional Requirements 9

2.3 Standards and Constraints Considerations 10

2.4 Previous Work And Literature 10

2.5 Proposed Design 10

2.6 Technology Considerations and assessment 10

2.7 Safety Considerations 10

2.8 Task Approach 10

2.9 Possible Risks And Risk Management 11

2.10 Project Proposed Milestones and Evaluation Criteria 11

2.11 Project Tracking Procedures 11

2.12 Expected Results and Validation 11

2.13 Test Plan 11

3 Project Timeline, Estimated Resources, and Challenges 12

3.1 Project Timeline 12

3.2 Feasibility Assessment 13

3.3 Personnel Effort Requirements 13

3.4 Other Resource Requirements 13

3.5 Financial Requirements 13

SDDEC18-17 2

4 Closure Materials 14

4.1 Conclusion 14

4.2 References 14

4.3 Appendices 14

SDDEC18-17 3

List of Figures

N/A

List of Tables

Table 1: Test Plan

Table 2: Financial Requirements

List of Symbols

N/A

SDDEC18-17 4

1 Introductory Material

1.1 ACKNOWLEDGEMENT

Sddec18-17 would like to thank Taylor Greiner and Connor Jennings from Greiner Jennings
Holdings, LLC for their contribution to the IoT Remote Monitoring Application for
Commercial Appliances. Taylor Greiner and Connor Jennings submitted the proposal for
the project and are providing our team with the necessary hardware and software
components to complete our project. The items being provided include a washer control
board, a dryer control board, a Raspberry Pi single-board computer, an Arduino Yun
microcontroller, and an AWS IoT cloud service. Sddec18-17 would also like to thank the
ECpE department at Iowa State University for funding our project.

1.2 PROBLEM STATEMENT

According to the industry definition, a laundromat is a facility with washing machines and
dryers available for public use. In fact, there are over 81,000 laundromats in the United
States and the largest growing demand industry for on-site laundromats include
apartments and dormitories. Despite the demand for on-site washing machine and dryer
services, laundromats are often met with customer complaints. Customers tend to ‘forget’
that they are not the only ones doing laundry. Common complains often include ‘having
to wait for machines to become available’ or lack thereof scheduling.

The purpose of our project is to find a method that mitigates scheduling conflicts between
customers who want to access washing machines and dryers in a shared environment. To
do so, our team will be utilizing the concept of IoT - Internet of Things. The internet of
things consists of a network of physical hardware devices that can be controlled remotely.

Our proposed solution consists of two components: An IoT cloud service and a mobile
application. An IoT cloud service will be used to register a set of washing machine and
dryer control boards that can be controlled remotely. A multi-platform mobile application
will be developed to connect to an IoT cloud service so that users may monitor, reserve,
and control devices remotely. A reservation system on the mobile application will allow
users to reserve a device for a set period of time. Once reserved, a time-stamped code will
be generated for the user. during the reservation time, the reserved machine will be locked
until the time-stamped code has been entered by the user, essentially gives users the
opportunity to use a machine without it being taken. this will help prevent customers
from traveling to a shared-appliance room only to find all of the machines in use.

SDDEC18-17 5

1.3 OPERATING ENVIRONMENT

Since our proposed solution requires the use of several single-board computers, and
microcontrollers, washer control boards, and dryer control boards, these hardware
components may be subject to adverse operating conditions. Microcontrollers or
single-board computers are also susceptible to overheating if overused or if located in a
room with poor ventilation. It is expected that each washer and dryer will be frequently
used, so we must account for standard wear-and-tear, damages, and out-of-service
maintenance. Our microcontrollers and single board computers will be placed in an
environment that is vulnerable to water damage. Neither microcontroller no single-board
computer is water resistant, so caution must be taken when interfacing hardware
components.

1.4 INTENDED USERS AND INTENDED USES

Greiner Jennings Holdings, LLC is dedicated to creating and delivering tech services for
the industrial, electrical, and commercial space. they have collaborated with DPT Group
and Critical Labs whom are dedicated to boosting productivity and control costs through
synchronized communication, systems integration, and cloud computing. Therefore, the
intended users of our mobile application include environmental and power systems
manufacturers in the industrial, electrical, and commercial space.

The intended use cases of our mobile application can be divided into two separate
sections: long-term and short-term. The short-term use case revolves around customers
being able to remotely reserve a washing/drying machine using a third-party transaction
platform. Each reservation generates a specialized time-dependent code. During the
reservation period, the customer may enter the previously generated code to unlock and
use the machine. Our client has mentioned that the long-term use case would include the
expansion of IoT to other types of commercial appliances. However, we’ve been asked to
direct our efforts towards the aforementioned short-term use case as integration of other
types of commercial appliances should be trivial.

1.5 ASSUMPTIONS AND LIMITATIONS

Assumptions

1. The mobile application will only be presentable in English.
2. Each appliance will be differentiable from each other. We are being provided one

washing machine component and one microcontroller to start. Thus, scalability
should (hopefully) not be a problem.

Limitations

1. It is unknown how ‘smart’ the appliance component will be. The client has not
purchased a component as of yet, but will do so with simplicity (for our sake) in
mind. It is possible we will have do some configuration between the component
and the microcontroller.

SDDEC18-17 6

2. Clearly there is a deadline (December 2018) and thus a time constraint.
3. The application will be mobile and thus any intensive computing should happen

on the server end of the architecture.
4. Hardware purchases may not exceed our $500 funded budget.

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES

Mobile Application

It is expected that our team delivers a multi-platform mobile application supporting the
Android and iOS operating systems. The mobile application will allow users to view an
availability schedule for shared-room appliances across several locations. Users will have
the ability to reserve an appliance at a specific time for a fee. During each reservation
period, the user will be able to control the reserved appliance remotely from his or her
mobile device.

Phase 1 Delivery Date: A prototype of the customer user interface presenting several
different screen implementations for scheduling and reserving an appliance will be
delivered during the last week of February.

Phase 2 Delivery Date: A prototype of the customer user interface with data populated
from the external backend will be delivered during the last week of March. It can be
expected that version 1 of the reservation system is completed.

Phase 3 Delivery Date: Functioning prototype of the customer version of the iOS and
Android application will be delivered during the last week of April

Phase 4 Delivery Date: A prototype of the administrator user interface presenting different
screen implementations for viewing usage, energy and pricing statistics, analytics and data
for machines at each laundromat location will be delivered during the last week of
September.

Phase 5 Delivery Date: A model for analyzing data will be delivered during the last week of
October.

Phase 6 Delivery Date: A prototype of the administrator user interface with valid data
analytics presented will be delivered during the last week of November.

Phase 7 Delivery Date: A Completed application for the administrator user interface with
valid data analytics being viewable will be delivered during the last week of class in
December

SDDEC18-17 7

Web Server

It is expected that our team provides a dedicated hosting server with a MySQL database.
the web server will be responsible for facilitating communication between the washing
machine control board and the mobile application. Requests made from the mobile
application will sent to the dedicated web server, which will work with the Amazon IoT
Web Service to control and provide feedback from the registered commercial appliances.
The MySQL database will be used to store user profile information, user login
information, and calendar scheduling data.

Phase 1 Delivery Date: Spring Boot server will be setup by end of January

Phase 2 Delivery Date: Spring Boot REST API will be created and database will be
populated with data for users, locations, and reservations by end of February

Phase 3 Delivery Date: Server - Client (server to mobile) connectivity will be established by
the end of March

Phase 4 Delivery Date: Server - AWS IoT (server to web service) connectivity will be
established by the end of April

Phase 5 Delivery Date: AWS Iot - Server - Client connectivity will be established by the end
of September

Phase 6 Delivery Date: Implementation of payment transaction platform will be
established by the end of October

IoT-connected Hardware Controller

The microcontroller will be responsible for communicating and controlling the appliance
controller (and therefore the appliance). It will provide a simple interface for the web
server to ultimately control the appliance. It will also provide feedback to the server/IoT
cloud so that the user stays up to date.

Phase 1 Delivery Date: A raspberry pi will be able to receive a command line signal to turn
an LED light on/off by the end of February

Phase 2 Delivery Date: A raspberry pi connected to a lamp (mimic functionality of a
washing machine) will be able to receive a command line signal to turn lamp on/off by
Mid March

SDDEC18-17 8

Phase 3 Delivery Date: A raspberry pi will be able to receive a signal from AWS IoT to turn
a lamp on/off by the end of March

Phase 4 Delivery Date: A raspberry pi will be able to receive a signal from AWS IoT to turn
a washing machine control board on/off by the end of March

Phase 5 Delivery Date: A raspberry pi will be able to receive a signal from AWS IoT to turn
a portable washing machine on/off by the end of September

Phase 6 Delivery Date: A raspberry pi will be able to receive portable washing machine
usage data such as washing cycle by end of November

SDDEC18-17 9

2 Proposed Approach and Statement of Work

2.2 FUNCTIONAL REQUIREMENTS

● Locking Mechanism: The user must be capable of effectively locking the appliance
via the mobile application.

● Payment Transactions: The mobile application must make use of a 3rd party
payment system allowing users to lock and reserve an appliance.

● Data Tracking: The data from the appliances must be kept up-to-date and
maintained in the cloud, allowing the user to browse available appliances on the
mobile application.

● Appliance Control: The microcontroller must be capable of receiving requests from
the mobile application and executing them appropriately by interacting with the
‘smart’ hardware component of the appliance.

2.3 STANDARDS AND CONSTRAINTS CONSIDERATIONS

As a group we have decided on certain non technical requirements/constraints. Two of the
constraints are creating a mobile application for android and iOS that does not use up a
lot of battery or mobile data when the user is using the application. Another constraint
that we have is a request from our client when it comes to the use of AWS. After a certain
amount of accesses to the AWS server that start to charge you and so ou client requested
that we keep the amount of times that we need to accesses the server to a minimum to
keep the cost of the service down.

As for the standards, each team will use different coding standards depending on the
language they will be using. The iOS team will be complying with the API Design
Guidelines created by Apple Inc. The Android team will be complying with the ASOP Java
Code Style for Contributors created by Google Inc. The hardware team will be complying
with GNU Coding Standards. None of the standards that our three sub teams will be using
are more of the industry standard and aren’t considered unethical. Using these standards
when coding for our project will allow our code to be clear and readable to other people in
our group and people from outside the group.

2.4 PREVIOUS WORK AND LITERATURE

The project that we are assigned is mostly related to the general idea of Internet of Things
(IoT). Internet of Things (IoT) refers to the network connected objects, which in
particular, the network of physical devices, vehicles, home appliances and other items
embedded with electronics, software, sensors etc.

The term “The Internet of Things” was coined by Kevin Ashton from Auto-ID Labs at MIT
in 1999. However, the idea of IoT was promoted decades before that. One of the very first
examples of an Internet of Thing was developed in Carnegie Melon University: developers

SDDEC18-17 10

made a Coca Cola machine which was connected to the inner network, people could
connect to it through the network to check the status of drink products1.

Since then, more and more things have been connected to the internet. As the underlying
technologies gradually become more mature, the number of IoT devices & projects grows
exponentially. According to a news post by IEEE SPECTRUM, there will be nearly 50
billion individual devices connected as IoT network in 20202.

Back to our project, the schema we have planned for our project is basically a
terminal-cloud-terminal model of internet of things. Similar to the Coca Cola machine
mentioned above, this is perhaps the most classic way to deploy an IoT project.
Nonetheless, as the mobile application & cloud computing techniques become more
mature and more individual developable, we slightly shifted the ‘terminals’ to be smart
phones instead of large computing machines; and the ‘cloud’ to be third-party web
services (such as AWS, Blue Mix etc.) instead of inner network connections. This way, we
can build a full-lifecycle, spatial distributed IoT project which is similar to but not exactly
like the ‘ancient drink machines’.

2.5 PROPOSED DESIGN

Mobile Application

To create a cross-platform mobile application, one of two approaches may be taken:
Native approach, or Framework approach. The native approach refers to using the native
or proper programming language for each platform. The current native programming
language for iOS is Swift with the Objective-C being the native language prior to Apple’s
release of Swift. The everlasting native programming language for Android is Java,
however recently Google announced that they were officially adding support for the kotlin
programming language. Non-native programming languages for mobile development are
often used as for cross-platform development in which only one set of source code needs
to be maintained. Examples of cross-platform languages include Xamarin with Visual
Studio. Our client had initially recommended the use of a single cross-platform language,
however since our team has experience with Android - Java and iOS - swift, the native
programming languages will be used.

Web Server

For the server that will support our project by doing many of the heavy calculations and
connecting to a database for storage, there are many options available. Some options
considered were Node, PHP, and Java Spring Boot. One person on the team had
considerable experience with Java Spring Boot and all members of the team were relatively
familiar with programming in Java, so it was decided that we would use Java Spring Boot.
To satisfy the requirements of both connecting to the mobile application and the IoT, it
was decided that the web server will be a REST API. The REST API will be able to be called
by the mobile application to provide information about the states of commercial

SDDEC18-17 11

applications connected to the solution, and will also be able to be hit by AWS IoT lambda
expressions to update the state of connected commercial applications in the database.

The internal architecture of the web server will be divided into ‘controller’, ‘service’, and
‘repo’ segments that will do specific tasks. The ‘controller’ layer will define the API and
accept requests, passing information onto the appropriate ‘service’ layer segment to fulfil
the requests. The ‘service’ layer will do the bulk of the business logic, making calculations
or calling appropriate ‘repo’ segments as needed. The ‘service’ layer will return results to
the ‘controller’ layer. The ‘repo’ layer will allow querying from the database, and will
return results to the ‘service’ layer. The ‘repo’ layer will be segmented up so that each
object that will be stored in the database will have their own segment in the ‘repo’. The
objects that will be stored in the database and have their own ‘repo’ segment will be stored
as ‘entity’s.

IoT-connected Hardware Controller

For the hardware portion of our project we want to use a microcontroller, whether that be
a raspberry pi or an arduino yun, to pull the information that we want off the washing
machine/dyer boards. When talking with our client we had the idea to try and get directly
connected with the board but with further brainstorming we realized that connecting to
the board might go beyond the scope of this project unless a USB connect was present.
Taking this into consideration and suggestions from our advisor we learned that another
senior design group has been able to obtain information from a washing machine using
external sensors. Being able to connect directly to the washing board would be simpler but
if it is not possible to get connect directly to the washer board we would have to use the
alternative of external sensors. Once the microcontroller is connected to the commercial
appliance, the state of that appliance will be sent via the AWS IoT and lambda function
calls to the web server.

2.6 TECHNOLOGY CONSIDERATIONS AND ASSESSMENT

When we were considering what technologies we were going to use for the solution, we
had to account for several strengths and weaknesses of our design, as well as make
trade-offs based on what we found.

In our design, there are many apparent strengths. One is that we will be supporting both
IOS and Android for our application. Another strength is that our design is scalable. New
commercial appliances may be added added as desired to the AWS IoT. Lambda
expressions from AWS IoT are spun up on the fly as needed. If the web server is
overloaded, then another web server can be spun up to take some of the traffic by applying
a load balancer in front of the server. The mobile component can be added over many
phones, and will all connect to the central server network. Also, one final strength of the
design is that the mobile component is battery-friendly. Since many of the larger
calculations are made by the server, the phone’s CPU is not used as much as it might be
otherwise, saving battery and allowing the mobile component to be used on older or less
powerful phones.

SDDEC18-17 12

There are several weaknesses in our design as well, however. The first one is that the
microcontroller that connects to the commercial appliances will need to be manually
connected to each appliance, and it is possible that connecting microcontrollers to
appliances may be 1 to 1, meaning each new appliance added would need its own
microcontroller to connect to AWS IoT. Another weakness is that the dedicated database
itself cannot be expanded. The database and its speed will be the choke point for the
growth of our solution.

When deciding on our technologies, we had to consider several things. The first was
whether we should use a relational or graph database. A relational database would allow
fast querying and was more widely known by the team, whereas a graph database may
allow for faster querying or less table joins. It was decided that we would use a relational
database because more of the team knew SQL, SQL was supported across all relational
databases (including the one supported by AWS), the querying we would be doing would
most likely be dealing primarily with entire objects and not as much with the relationships
between them, and AWS’ graph database was queried from a language that none of the
team members had experience with. Another thing that has to be considered is what
microcontroller we should use. This is still being considered, as we will have access to
several and testing has not started yet.

We felt like our solution was the most expandable, and offered the most benefits for our
experience. Another possible solution would be to use a graph database instead of a
relational database, however we have less experience with the AWS graph database than
we do with relational databases. We could also have created our server in PHP or Node.
However, with PHP the scope of available services can be limited. This may not have been
an issue for our proof of concept, but when the project scales this could have become a
pain. Also, for example, using collections in java is much easier than in PHP and could
potentially increase our performance as we optimize queries on result sets returned by the
database. Also, asynchronous processing could be necessary as our project scales up, and
php struggles in this area compared to java. Node also would have been a decent choice;
however, it falls behind spring boot in a couple of key areas, one being security. While
spring configuration is typically more cumbersome than node, we had an experienced
backend team lead to handle most of the configuration issues a newcomer might
encounter.

It was also possible that we could forgo the server entirely and just have all of the
information loaded straight from the database onto the application, however this would
force more stringent CPU requirements on the phones themselves as well as use more of
the phone’s battery.

The mobile development team has looked through several options to develop the android
and iOS applications. In the end we chose to make both applications using the native
languages Swift for iOS and Java for Android. Before deciding on that we were going to use
the swift and java to develop the applications we looked at frameworks such as Xamarin,

SDDEC18-17 13

Cordova and Appcelerator that allow a developer to create an application that can be
compiled to both the iOS and Android platforms.

Xamarin is a platform that allows a developer to use C# to create a single code base and
compile for both iOS and Android platforms. According to the Xamarin website you as a
developer are able to do anything with C# and the Xamarin framework that you can do
with Swift and Java. The mobile development team decided to not go with Xamarin
because we have not had any experience with C# and the Xamarin framework. We didn’t
want to take the time to learn a new framework and new language to be able to do what
we want to given our prior knowledge with swift and java.

Next we looked at Cordova and Appcelerator which are frameworks that allows a
developer to create a single code base using HTML, CSS and Javascript for Cordova and
only Javascript for Appcelerator and compile it to to work as iOS and Android
applications. Again same as when we looked at the Xamarin framework the mobile team is
more versed in Swift and Java and have less experience with the two frameworks and the
languages required.

In the end as a group we decided to create both the iOS and Android applications using
the native languages Swift and Java. We chose this option because we both have
experience with creating android and iOS application using the native languages. By
choosing to develop the iOS and Android applications using the native languages we save
ourselves some time learning technology to advance our project.

2.7 SAFETY CONSIDERATIONS

Include any safety concerns you find applicable to you project.

2.8 TASK APPROACH

Our group of six people is being partitioned into three subgroups: frontend, backend, and
hardware. Each subgroup consists of two people, with one individual assuming the lead
role. Our project leads are the individuals with the most experience and ability in that
particular role. During the initial development stage, our three subteams will work on
their own for the most part. Each week we will meet to discuss the status of each group, as
well as what needs to be done to stay on pace with the rest of the group. Our individual
team leads will delegate tasks as they see fit. Each team has their own set of tasks, whether
they are managed internally or on the gitlab issue board. The integration stage will be
much more of a group effort; however, it is possible that new bugs arise during this stage
and we may need to partition off for development rework.

2.9 POSSIBLE RISKS AND RISK MANAGEMENT

1. Time Restrictions: As with any project tied to a deadline, there is a potential for
the team to fall behind schedule and ultimately not meet the level of expectation
placed upon us by the client. We also all have other responsibilities, and it is
important that the team stays cohesive during seemingly downtime throughout

SDDEC18-17 14

the semester. We plan on mitigating this risk by meeting on a weekly basis as well
as keeping our scrum board up to date in gitlab.

2. Hardware Compatibility: As the client's’ choice of hardware component for the
appliance is still up in the air, we face numerous risks associated with our
hardware. While it is possible the component is capable of plugging into our
microcontroller via USB, we need to be aware this is not guaranteed. If we have to
find another solution, we run the risk of falling behind at a critical point in the
semester as it could be a couple of weeks before we are notified of the selection.

3. AWS Restrictions: Due to the fact that our project is going to be cloud based, we
have to try and limit the amount of traffic we are running across the cloud for our
clients sake. While he promotes the use of Amazon Web Services, he
acknowledged that he would like us to try and minimize the amount of financial
resources that need to be allocated for Amazon.

2.10 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Mobile Application

It is expected that our team delivers a multi-platform mobile application supporting the
Android and iOS operating systems. The mobile application will allow users to view an
availability schedule for shared-room appliances across several locations. Users will have
the ability to reserve an appliance at a specific time for a fee. During each reservation
period, the user will be able to control the reserved appliance remotely from his or her
mobile device.

Phase 1 Delivery Date: A prototype of the customer user interface presenting several
different screen implementations for scheduling and reserving an appliance will be
delivered during the last week of February.

Phase 2 Delivery Date: A prototype of the customer user interface with data populated
from the external backend will be delivered during the last week of March. It can be
expected that version 1 of the reservation system is completed.

Phase 3 Delivery Date: Functioning prototype of the customer version of the iOS and
Android application will be delivered during the last week of April

Phase 4 Delivery Date: A prototype of the administrator user interface presenting different
screen implementations for viewing usage, energy and pricing statistics, analytics and data
for machines at each laundromat location will be delivered during the last week of
September.

Phase 5 Delivery Date: A model for analyzing data will be delivered during the last week of
October.

SDDEC18-17 15

Phase 6 Delivery Date: A prototype of the administrator user interface with valid data
analytics presented will be delivered during the last week of November.

Phase 7 Delivery Date: A Completed application for the administrator user interface with
valid data analytics being viewable will be delivered during the last week of class in
December

Web Server

It is expected that our team provides a dedicated hosting server with a MySQL database.
the web server will be responsible for facilitating communication between the washing
machine control board and the mobile application. Requests made from the mobile
application will sent to the dedicated web server, which will work with the Amazon IoT
Web Service to control and provide feedback from the registered commercial appliances.
The MySQL database will be used to store user profile information, user login
information, and calendar scheduling data.

Phase 1 Delivery Date: Spring Boot server will be setup by end of January

Phase 2 Delivery Date: Spring Boot REST API will be created and database will be
populated with data for users, locations, and reservations by end of February

Phase 3 Delivery Date: Server - Client (server to mobile) connectivity will be established by
the end of March

Phase 4 Delivery Date: Server - AWS IoT (server to web service) connectivity will be
established by the end of April

Phase 5 Delivery Date: AWS Iot - Server - Client connectivity will be established by the end
of September

Phase 6 Delivery Date: Implementation of payment transaction platform will be
established by the end of October

IoT-connected Hardware Controller

The microcontroller will be responsible for communicating and controlling the appliance
controller (and therefore the appliance). It will provide a simple interface for the web

SDDEC18-17 16

server to ultimately control the appliance. It will also provide feedback to the server/IoT
cloud so that the user stays up to date.

Phase 1 Delivery Date: A raspberry pi will be able to receive a command line signal to turn
an LED light on/off by the end of February

Phase 2 Delivery Date: A raspberry pi connected to a lamp (mimic functionality of a
washing machine) will be able to receive a command line signal to turn lamp on/off by
Mid March

Phase 3 Delivery Date: A raspberry pi will be able to receive a signal from AWS IoT to turn
a lamp on/off by the end of March

Phase 4 Delivery Date: A raspberry pi will be able to receive a signal from AWS IoT to turn
a washing machine control board on/off by the end of March

Phase 5 Delivery Date: A raspberry pi will be able to receive a signal from AWS IoT to turn
a portable washing machine on/off by the end of September

Phase 6 Delivery Date: A raspberry pi will be able to receive portable washing machine
usage data such as washing cycle by end of November

2.11 PROJECT TRACKING PROCEDURES

We are going to track our progress using gitlab’s built-in issue board. Here we can create,
assign, and track the status of tasks as development continues throughout the semester.
The creation and assignment of tasks will typically happen at one of our weekly meetings
as we adhere to the scrum philosophy. Using this technology, we can see what everyone is
working on during the week as well as request either help or a code review prior to
merging new software into the master branch.

While gitlab will host most of the development-specific tasks, we have a timeline laid out
detailing functional requirement deadlines. In addition to using gitlab, we will track
progress at a higher level by evaluating which tasks align with a certain deadline. Using
this information, we can ensure the status of our current project.

2.12 EXPECTED RESULTS AND VALIDATION

Mobile Application

The Android and iOS mobile application are responsible for hosting the calendar-based
reservation system to checkout external appliances. The application must feature a login
system that stores user reservation data and secures payment transaction information. If a
user would like to reserve an appliance for a given period of time, the application must
allow for them to select a day and time frame, generate a code in response to the
reservation time and machine #, and send reservation lock data to the IoT stack. During a

SDDEC18-17 17

reservation time, the application must send signal data to the IoT to update usage status
and record usage analytics.

To validate that our iOS mobile application performs as expected, the iOS team will be
writing a series of iOS Unit Tests following apple guidelines at
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual
/testing_with_xcode/chapters/04-writing_tests.html. Xcode, the IDE for iOS offers a test
navigator to test several components of an app including: application model,
asynchronous methods, interactions with libraries, interactions with system objects, UI,
and performance.

To validate that our Android mobile application performs as expected, the Android team
will be writing a series of Android Unit tests following training from
https://developer.android.com/training/testing/unit-testing/index.html.

Web Server

The job of the web server is to connect the commercial appliances in AWS IoT to our
database and make that data available to both of our mobile applications. The main
purpose of the web server this first semester is to store information about the machine
such as if it is on and if a user has reserved a certain washer/dryer at a particular location
for a specific time. To validate that our database works we will show that with the mobile
applications we will be able to reserve a machine by changing a field in the data and
showing that we can turn the machine off and on from the mobile applications.

IoT-connected Hardware Controller

The desired outcome for the hardware portion of the project would to be able to do the
following things. One, to be able to turn the washing machine and dryer on. Two, to be
able to pull various information from the washer/dryer boards such as power consumption
for analysis. To show that this functionality work by turning the washer/drying and
displaying the information pulled from the washer/dryer board on the mobile application.

2.13 TEST PLAN

Functional Requirements Test Plan

SDDEC18-17 18

https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/testing_with_xcode/chapters/04-writing_tests.html
https://developer.android.com/training/testing/unit-testing/index.html

Reservation Lock: mobile application must
generate a number to be entered into the
appliance

This could be separated into two test scenarios:

1. For the mobile app side: make a fake signal
from the cloud, try to generate the number on
the mobile app. (Eventually can send multiple
signals pretending different users, test this on
multiple smartphones, also across platform
between IOS and Android)

2. For the microcontroller side: hardcode a
number from the cloud, see if this number is
able to unlock the machine. Also, test different
numbers in terms of reservation time, then test
if those numbers could unlock the machine
respectively.

Reservation fees - payment transactions This could be tested by creating a test account,
process the reservation and finish the payment
to see if the balance changed on the test
account. In addition to this, test if the
reservation can be successfully marked on the
cloud after payment.

Hardware appliance use information must be
tracked

This can be tested in three phases:

1. Manually run the wash machine, test if the
microcontroller can track the information such
as running time.

2. After phase 1, add another layer onto it.
Manually run the wash machine, to see if the
information that been tracked by the
microcontroller can be send to the cloud server
and database.

3. Combine two phases above or create a set of
fake data on the cloud. Then try to update
these information on the mobile terminals.
Test if these information can be presented on
the mobile apps.

Scheduling and real-time data are
synchronized

 These will be synchronized at the database
level. This may be tested by opening two
database transactions at the same time and

SDDEC18-17 19

making sure that only one of them is able to
reserve a commercial appliance at a time.

User profiles This can be tested by creating a test user
account. Editing different user info to see if the
cloud side can track the updates.

Server maps to microcontroller given a request
from the mobile platform

Similar to the reservation lock test cases.
Create test data sets from mobile application to
the cloud server, then create test data sets from
server to request the microcontroller.

Table 1: Test Plan

3 Project Timeline, Estimated Resources, and Challenges

3.1 PROJECT TIMELINE

Due to the nature of Senior Design, our project will follow a revised version of the
waterfall model. The waterfall model is a linear sequential design approach for the
development of hardware and software. Throughout the next two semesters, our timeline
will be divided into five phases, with several phases overlapping.

Phase 1: Requirements

The first phase of our timeline consists of project planning. Items include capturing
software and hardware requirements, identifying project scope and end goals, and
building team expectations and roles.

Phase 2: Design

The second phase of our timeline focuses on design thinking to create sketches, diagrams,
and simplistic prototypes that resemble features to be implemented in the end product.
Activities such as design thinking and design documentation occur during the second
phase.

Phase 3: Development

The third phase of our timeline is the development stage. Unlike standard waterfall
methods, our development stage will be a bit revised since there are deliverables that must
be presented during the last week of Senior Design 1 and Senior Design 2. Therefore, we
will have two development phases, one per semester. During semester 1, development will
focus on prototyping the core functionality of the mobile application, interfacing the
hardware components, and forming a connection between the hardware and software.

SDDEC18-17 20

During semester 2, development will focus on incorporating data analytics into our mobile
application.

Phase 4: Testing

The fourth phase of our timeline is the verification and validation stage. During the testing
stage, Unit tests will be written for both the iOS and Android mobile platforms. Similarly,
hardware components will be tested following the methods outlined in the validation and
verification section of the project plan.

Phase 5: Deployment

The fifth phase of our timeline is the deployment stage. The deployment stage is where
our milestone deliverables will be demonstrated as part of a panel presentation, client
presentation, final IRO presentation, and final client presentation.

The gantt chart provides a more comprehensive timeline and will be updated per change
in expectations.

[Gantt Chart on Next Page]

SDDEC18-17 21

SDDEC18-17 22

3.2 FEASIBILITY ASSESSMENT

Project Description:

The goal of our project is to use the IoT consists of a network of physical hardware to help
consumers use the washing machine and dryer remotely. By using the mobile
applications(Android and IOS), the consumers can reserve the washing time and enter the
generated code to turn the machine on. Whole operations can be accomplished remotely
so the consumer won’t waste time travelling shared laundry.

Possible Challenges and Solutions:

1. Redundant Operation: The challenge is that we will add the operation on the
mobile application to ensure the consumers can turn on the machines remotely.
But this step seems redundant since even if the consumers reserved the washing
machine, they still need to bring the clothes there. If we add this operation, the
project will be extremely complicated. We need to connect the board from the
wash machine to our application and show the information. This will be a hard EE
work.

The solution will be a little tricky. We can buy an electric locker with specific
functions which is able to connect our mobile apps. Adding the locker on the lid
will be easy to lock the washing machine. When we are going to use the washing
machine, we can use the mobile to unlock that locker and the lid can be open.

2. Rebuild the Laundry: This challenge we are facing is that many laundry are not
able to connect to wifi since the old buildings will not provide the internet in the
laundry. Also, rebuilding the laundry and adding internet connection will be a big
cost.

The solution is that what we are working is just a project. We can work with the
laundry limit to have internet connection and some 5V socket so we can connect
the microcontroller to the washing machine through the socket.

Evaluation Criteria:

1.Practical

The project should not be too complicated since a it just take months so a
complicated project will make our work inefficient.

 2.Cost-Efficient

The cost of our project should not be big. And the project should be realistic, we
should not change the construction of the laundry. Our main goal is to improve
the situation rather than change it.

SDDEC18-17 23

Outcome:

After we figure out how to solve the potential challenges, I think our project turns to be
cost-effective, practical and feasible.

3.3 PERSONNEL EFFORT REQUIREMENTS

Task Team Effort Level Explanation

Initialize Spring
Boot Server

Backend Medium While there are a number of
configuration issues to hash out,
our backend lead has industry
experience with the framework.

Set up remote
database

Backend Low Simply request a database and
build out the necessary tables and
relationships.

Configure gradle
profiles

Backend High Our backend lead customized
three gradle profiles: local,
remote and prod. These basically
correspond to which datasource
is being utilized.

Outline REST API Backend Low This mainly consists of
identifying use cases and
providing API endpoints via
controllers.

Implement API Backend Medium While some of the queries were
straightforward and required
minimal effort thanks to spring
boot, a few implementations took
an extended period of time to
return the correct results.

Connect AWS to
Raspberry pi

Hardware High Connecting the pi to AWS cloud
proved more difficult than
originally thought, with a lot of
configuration involved.

Extract data from
the washing
machine
component

Hardware High Due to the lack of intelligence in
our washing machine
component, reading data from
the machine is going to be

SDDEC18-17 24

difficult. We may need to
measure current flowing to/from
the machine and make
assumptions based on that.

Develop UI Frontend High Our mobile solution is stemming
both iOS and android platforms.
We have had numerous redesigns
based on feedback and
collaboration between the two
mobile developers.

Connect to server Frontend Low While this shouldn’t take too
much time to figure out, this is a
critical point in the project.

Implement
functionality

Frontend High Due to redesigns and slightly
altered use cases, the mobile
team has spent a lot of time
implementing the necessary
functionality, such as utilizing
google maps to search for nearby
laundromats.

3.4 OTHER RESOURCE REQUIREMENTS

Our team requested and received a dedicated remote database server to use for remote
testing. We will need to host our backend server eventually as well. However, for the time
being, we are running our server on localhost.

3.5 FINANCIAL REQUIREMENTS

Microcontrollers

Arduino Yun Microcontroller $89.95

Raspberry Pi 3 Motherboard (alternate option for
Arduino Yun)

$36.37

Components might associate with above

Power supply or battery $10 - $20

SDDEC18-17 25

Basic electronic kit (breadboard, resistors, wires etc.) ~$15

Others

Washer embedded board unknown

AWS account unknown

Total: $161.32 (for the moment)

Table 2: Finnancial Requirements

4 Closure Materials

4.1 CONCLUSION

The problem with shared-appliance rooms has been around as long as public laundromats
and college dormitories; due to no time restrictions after entering the allotted fee,
appliances often sit occupied but out of commission as users either forget about their
belongings or neglect to collect them immediately. Our solution aims to enforce priorities
via a scheduling application. By reserving a machine for a specified amount of time, a user
will essentially broadcast to all other interested parties the status of its targeted machine.
This will prevent the frustrating scenario of a user wishing to use an appliance only to find
it is currently unavailable.

Our approach consists of a mobile application connected to a server which retrieves data
from the cloud and presents it to the user in the form of a calendar. The mobile
application will send requests to the server (for example, when reserving an appliance)
which will communicate with the Amazon Web Services and translate the request to the
hardware controller. In the microcontroller will reside software capable of locking or
monitoring the status of the targeted appliance.

4.2 REFERENCES

1. “A Brief History of the Internet of Things.” DATAVERSITY, 6 Aug. 2016,
www.dataversity.net/brief-history-internet-things/.

2. 18 Aug 2016 | 13:00 GMT. “Popular Internet of Things Forecast of 50 Billion
Devices by 2020 Is Outdated.” IEEE Spectrum: Technology, Engineering, and
Science News, 18 Aug. 2016,
spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-
of-50-billion-devices-by-2020-is-outdated.

SDDEC18-17 26

http://www.dataversity.net/brief-history-internet-things/
http://www.dataversity.net/brief-history-internet-things/

4.3 APPENDICES

If you have any large graphs, tables, or similar that does not directly pertain to the problem but helps
support it, include that here. You may also include your Gantt chart over here.

– Any additional information that would be helpful to the evaluation of the project plan or should be
a part of the project record shall be included in the form of appendices

– Examples of project documentation that might be included are property plat layouts or
microprocessor specification sheets germane to the proposed project.

SDDEC18-17 27

