IoT Remote Monitoring For Commercial Appliances

Team 17

Clients:

Taylor Greiner Connor Jennings

Advisor: Goce Trajcevski

Members: Hongyi Bian,

John Fleiner, Casey Gehling, Thomas Stackhouse, Ben Young, Yuanbo Zheng

1

Presentation Outline

- Project Plan
- Design
- Plans for Next Semester

Project Plan

Overview/Motivation

Laundromats are hard to manage and inefficient to use

- Customers
 - Have to go to a location to check if appliances are available
 - Additional waiting time
- Managers
 - Additional cost to manage remotely
 - Wear and tear estimations

Problem Statement

Create a solution that uses the Internet of Things to allow commercial appliance reservation by users via a mobile interface.

Concept Diagram

Functional Requirements

- Reservation System
 - Remote users
 - Power control over appliance
- Online Transactions
 - 3rd-party software
- Data Tracking
 - Laundromat schedule

Non-Functional Requirements

- Security
 - End to end security
 - Online Transactions
- Performance
 - User Experience
 - Battery Life
- Scalability
 - Clients Vision
- Usability
 - Two Native Mobile Applications

Potential Risks and Mitigations

Raspberry Pi

- Waterproof
 - Waterproof Enclosure box
- Theftproof
 - Fasten to washing machine

Amount of Accesses to AWS Server

Constraints & Considerations

Constraints

- Use of Battery for Mobile
- Network Connection in Laundry

Considerations

- Strengths of Our Design
 - Supporting both IOS and Android
 - App Battery-Friendly
- Potential Weaknesses of Our Design
 - Manually Connected the Microcontroller with Commercial Appliances (1:1 relationship)

Market Survey

IoT Pay-per-wash Industry: April 21, 2018:

- Subscription based services (washing machine home installation; monthly charges)
- Companies such as UW Huismeester and Bundles implement the pay-per-wash business model

Berendsen: Microsoft Azure and IoT Hotel Laundry Service: April 13, 2018:

• IoT tracking of linen ID tags (1 million pieces throughout Europe daily)

Samsung Electronics Laundry Innovation - WW6850N Washing Machine: January 7, 2018:

• IoT compatible with Samsung's SmartThings ecosystem

Resource and Cost Estimate

Items	Price
Amazon Web Service (IoT)	Free-Tier
Portable Wash Machine	\$109.97
Raspberry Pi 3 Model B	\$35
16x2 LCD Display	\$9.95
3x4 Matrix Keypad	\$7.5
4 Channel Relay Module	\$7
Basic electronic kit (jump wires, resistors, etc.)	~\$15
Total:	\$184.42

Project Milestones and Schedule - Semester 1

Milestones

Mobile App

• Android and iOS

Backend

• Spring Boot and API requests

Hardware

- AWS IoT Commands (Power)
- Raspberry Pi

Architecture Diagram

Functional Decomposition

Mobile

• Android and iOS Native Applications

Backend

• Java Spring Boot server, AWS, database

Hardware

• Raspberry Pi microcontroller, commercial appliances, digital display, keypad

HW/SW/Technology Platforms Used

Mobile Development

Android IDE: Android Studio

iOS IDE: xcode

Spring Boot

Back-End

Hardware

Single-Board Computer: Raspberry Pi 3 Model B

Android Language: Java

iOS Language: Swift

Detailed Design - Mobile Application

Detailed Design - Mobile Application

UI

Android

iOS

Detailed Design - Hardware

Detailed Design - Hardware

Script

Circuit

Python

Init AWSIOTMQTTClient
myAWSIOTMQTTClient = None
if useWebsocket:
 myAWSIOTMQTTClient = AWSIOTMQTTClient(clientId, useWebsocket=True)
 myAWSIOTMQTTClient.configureEndpoint(host, 443)
 myAWSIOTMQTTClient.configureCredentials(rootCAPath)
else:
 myAWSIOTMQTTClient.configureEndpoint(host, 883)
 myAWSIOTMQTTClient.configureEndpoint(host, 883)
 myAWSIOTMQTTClient.configureCredentials(rootCAPath, privateKeyPath, certifis
AWSIOTMQTTClient.configureEndpoint(host, 883)
myAWSIOTMQTTClient.configureAutOReconnectBackofftime(1, 32, 20)
myAWSIOTMQTTClient.configureDrainingFrequency(2) # Draining: 2 Hz
myAWSIOTMQTTClient.configureDrainingFrequency(2) # Draining: 2 Hz
myAWSIOTMQTTClient.configureMQTTOperationTimeout(5) # 5 sec

Connect and subscribe to AWS IoT

Bash

GNU nano 2.7.4	File: aws_110v_example.sh
# stop script on error set -e	
<pre># run aws_110v_example samp printf "\nRunning AWS samp] python /home/pi/aws/aws_110</pre>	ole app using certificates downloade Le application\n" Dv_example.py -e a3k6dfmo5epd71.iot.

Plan For Next Semester

Plan For Next Semester - Mobile

- Client Side Mobile Application
 - Appliance Usage Data
 - Android and iOS Charts Library
- Testing
 - \circ Android Profiler \rightarrow Memory, CPU, Network
 - \circ Debug Analyzer \rightarrow CPU, Memory, Network
 - \circ Android junit \rightarrow Correctness
 - $\circ \quad \text{ iOS unit} \rightarrow \text{Correctness}$
 - Usability Survey
- Security
 - $\circ \quad \text{Payment Transaction Service} \rightarrow \text{Braintree or Stripe SDK}$

Plan For Next Semester - Backend

• Testing

- Integration
- Unit (~80-90% coverage)
- Security
 - Spring security
- Data Analytics
- Functionality Enhancements
- Performance Optimization
- Documentation
 - API
 - Javadoc comments

Plan For Next Semester - Hardware

- Keypad & LCD Screen
 - Implementation
- Integration with Portable Washing Machine
 - Exterior Setup
 - Network Environment Setup
- Testing
 - Circuit Correctness Testing
 - AWS IoT Communication Testing
 - User Interface Testing
- Security
 - Raspberry Pi SSH Security
 - MQTT Channel Security

Responsibilities and Contributions of Members

Mobile Team - Responsible for the Android and iOS App Development

- John Fleiner
- Ben Young

Backend Team - Responsible for Spring Boot and AWS IoT

- Thomas Stackhouse
- Casey Gehling

Hardware Team - Responsible for Raspberry Pi and Washer Components

- Hongyi Bian
- Yuanbo Zheng

Prototype Demo - Hardware

Prototype Demo- Front-End & Backend

[CustomerID '0, firsthame' 'Hike', 'Insthame', Josef', 'Instrume', 'Destroate', 'Distrume', 'password', 'password', ' CustomerID '1, firsthame' 'Cust, 'Insthame', 'toot', 'Instrume', 'Destroate', 'password', 'password', ' CustomerID '1, firsthame' 'Dest', 'Insthame', 'Cost, 'Instrume', 'Dest', 'password', 'password', 'CustomerID '1, firsthame' 'Dest', 'Insthame', 'Dest', 'Instrume', 'Dest', 'password', 'password', 'CustomerID '1, firsthame' 'Dest', 'Insthame', 'Dest', 'Instrume', 'Dest', 'password', 'password', 'CustomerID '1, firsthame' 'Dest', 'Insthame', 'Dest', 'Instrume', 'Dest', 'password', 'password', 'CustomerID', ', firsthame' 'Dest', 'Insthame', 'Dob', 'Instrume', 'Dest', 'password', 'password', 'CustomerID', ', firsthame' 'Dest', 'Insthame', 'Dob', 'Instrume', 'Dest', 'password', 'password', 'CustomerID', ', firsthame' 'Dest', 'Insthame', 'Dob', 'Instrume', 'Dest', 'password', 'password', 'CustomerID', ', firsthame' 'Dest', 'Insthame', 'Dob', 'Instrume', 'Dest', 'password', 'password', 'CustomerID', ', firsthame' 'Dest', 'Insthame', 'Dob', 'Instrume', 'Dest', 'password', 'password',

Questions?